DCP552 Digital Control Programmer

The DCP552 is a high-function programmer/ controller supporting two channels (up to 49 program patterns per channel) to which thermocouple, resistance temperature detector (RTD), DC voltage, DC current and other signals can be input.
The DCP552 supports a memory card interface, 16 event outputs, 16 external switch inputs and a wide range of other functions as part of the standard specification.

FEATURES

- Accuracy of $\pm 0.1 \%$ FS. Easy-to-view large display characters. Compact design
- Any input type can be selected by console key operation.
- Easy operation aided by guidance messages
- Up to 49 program patterns can be stored to each channel and up to 99 segments can be programmed to each pattern.
- Program patterns can be saved or loaded using the Smart Proximity Card (sold separately).
- The Smart Proximity Card uses highly durable and non-contact type cards

- Any event can be selected to each channel and set for the 16 event outputs, and code events comprising a combination of two or more points can be set.
-16 external switch inputs allow the control of remote selection of program Nos. or operation on each channel separately or both channels simultaneously
-CE marking-compatible
Applicable standards: EN61O 10-1, EN5008 1-2, EN50082-2

BASIC FUNCTION BLOCKS of DCP552

$\begin{aligned} & E \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Number of programs	49 programs x 2 channels
	Number of segments	99 per program, total 2000
	Segment setting system	RAMP-X: Set by set points (SP) and time. RAMP-T: Set by set points (SP) and ramp (13) RAMP-E: Set by set points (SP) and ASP per external switch input 1 pulse
	Segment time	0 to 500 hours 0 minute, 0 to 500 minutes 0 second, 0.0 to 3000.0 seconds (time unit selectable)
	Segment ramp	1 to 10000 U/hour, 1 to 10000 U/minute, 1 to 10000 U/second (time unit selectable)
	Segment ASP	1 to $10000 \mathrm{U} / \mathrm{l}$ pulse
	Number of aubfunctions	4000
	Sub-function action	Events, PID set, output limiter set, G. Soak, PV shift, repeat
	Eventa (16)	Set operating point corresponding to event type
	PID set No.	Set 0 (continuation of previous segment), 1 to 9 , A set (automatically switched) and ON-OFF control
	Output limiter aet	Set 0 (continuation of previous segment), 1 to 9
	G.Seek	Set type (start/end points and overall) and G.Soak width 0 to 1000 U .
	PV shift	-10000 to +10000 U
	Repeat	Set return destination segment No. and repeat count.
	PV start	Set type (rising/falling or both) for each program.
	Cycle	Set cycle count for each program.
	Pattern link	Set program No. 0 to 49 (0: no link) for each program.
	Tag	Set 8 alphanumerics or symbols for each program.
	Basic time accuracy	$\pm 0.01 \%$ (segment time setting $=0$, with 0.1 second delay for each repeat and cycle)
	Input type	Thermocouple, resistance temperature detector (RTD), DC voltage, DC current multi-range (See pages 6, 7.)
	Sampling cycle	0.1 seconds
	Input bias current	Thermocouple, DC voltage input: Max. $\pm 1.3 \mathrm{uA}$ (at peak value and reference conditions) 1 V or higher range: Max. $-3 \mu \mathrm{~A}$
	Input impedance	DC current input: approx. 50Ω (under operating conditions)
	Measuring current	RTD input: Approx. 1 mA current flow from terminal A (under operating conditions)
	Influence of wiring resistance	Thermocouple, DC voltage input: Thermocouple: $0.5 \mu \mathrm{~V} / \Omega$ DC voltage (max. 1 V range): $0.5 \mu \mathrm{~V} / \Omega$ DC voltage (5 V range): $3 \mu \mathrm{~V} / \Omega$ DC voltage (10 V range): $6 \mu \mathrm{~V} / \Omega$ RTD input: Max. $\pm 0.01 \% \mathrm{FS} / \Omega$ in wiring resistance range 0 to 10Ω Range of F01, F33, P01 and $\mathrm{P} 33: \pm 0.02 \% \mathrm{FS} / \Omega$ max.
	RTD input allowable wiring resistance	-Ranges other than F01, F33, P01 and P33: 85 , max. (including Zener barrier resistance. Note that site adjustment is required.) . Ranges of F01, F33, PO1 and P33: 10Ω max. (Zener barrier cannot be used.)
	Allowable parallel resistance	Thermocouple disconnection detection allowable parallel resistance: $1 \mathrm{M} \Omega \mathrm{min}$.
	Max. allowable Input	Thermocouple, DC voltage input: -5 to +15 V dc DC current input: $\quad 50 \mathrm{~mA} \mathrm{dc}, 2.5 \mathrm{~V}$ dc
	Burnout	Detection selectable
	Over-range detection threshold	110\%FS min.: Upscaled -10% FS max.: Downscaled (Note that F50 range is not downscaled.)
	Cold-junction compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (under standard conditions)
	Cold- junction compensation system	Internal/external ($0^{\circ} \mathrm{C}$ only) compensation selectable
	Scaling	-19999 to +20000 U (possible in case of linear input only. Inverse scaling possible. Decimal point position settable at any point)
	Square root extraction	Possible. Dropout: 0.2 to 10.0% in case of DC current or DC voltage range
	PV equalizer (linearization table approximation)	PV1: 9 segments (1 O points set) PV2: 9 segments (1 O points set) CP: 9 segments (1 0 points set)
	Input bias	-1000 to +1000 U variable
	Digital filter	0.0 to 120.0 seconds variable (0.0: filter OFF)

	Number of inputs	16	
	Types of connectable outputs	Dry contacts (relay contact) and open-collector (current sink to ground)	
	Terminal voltage (open)	$8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ between common terminals (terminals 12,40) and each input terminal (under operating conditions)	
	Terminal current (short-circuit)	Approx. 6 mA between each terminal (under operating conditions)	
	Allowable contact resistance (dry contact)	ON: 250 ohm max. (under operating conditions) OFF: 100 kohm min. (under operating conditions)	
	Voltage drop (at open-collector ON)	2 V max. (under operating conditions)	
	Leakage current (at open-collector OFF)	0.1 mA max. (under operating conditions)	
	Assignments (fixed)	RUN, HOLD, RESET, ADV, program No., CH1 operation cancel, CH 2 operation cancel	
	Assignments (variable)	RAMP-E, FAST, AT, AUTO/MANUAL, G.Soak cancel, auto-load, O_{2} sensor check	
	Input sampling cycle	0.1 seconds	
	ON detectlon min. hold time	0.2 seconds (0.4 seconds for program No.)	
	Upper display	Green 5 -digit, 7 -segment LED This displays PV values in the basic display state. Item codes are displayed in the parameter setup.	
	Lower display	Orange 5 -digit, 7 -segment LED This displays SP and output \% in the basic display state. Setting values are displayed in the parameter setup.	
	Program No. display	Green 2-digit, 7 -segment LED This displays program No. in the basic display state.	
	Segment No. display	Green 2-digit, 7-segment LED This displays segment No. in the basic display state. Item Nos. are displayed in parameter setup, and alarm No. is displayed when alarm occurs.	
	Message display	This displays output graph, deviation graph, event state and tags in the basic display state. This displays reference messages in the parameter setup and program setup. This displays operation details and operation results of memory card operation.	
	Profile display	7 orange LEDs Displays program pattern rise, soak and fall trends.	
	Status displays	22 round LEDs Modes: RUN, HLD, MAN, PRG (green) Display details: PV, SP, OUT, TM, CYC, SYN, DEV (green), EG1, EG2 (red) Battery voltage: BAT (red) (blinks at low voltage) Status: AT (green)	
	Operation keys	18 rubber keys	
	Loader connector port	1 (dedicated cable with stereo miniplugs)	
$\begin{aligned} & \text { g } \\ & \text { 8 } \\ & \text { B } \end{aligned}$	Progrsm operation modes	READY: Ready to run program (control stop/program No. selectable) RUN: Program run HOLD: Program hold FAST: Program, fast-forward END: Program end READY FAST: Ready to run and fast-forward program	
		AUTO: Automatic operation MANUAL: Manual operation (output can be controlled on console)	
	Constant-value operation modes	READY: Ready to run program (control stop) RUN:	
		AUTO: Automatic operation MANUAL Manual operation (output can be controlled on console)	
$\begin{aligned} & \text { 힣 } \\ & \text { 휸 } \\ & 0 \end{aligned}$	PID controls	Proportional band (P)	0.0 to 1000.0\% (0.0: ON-OFF control)
		Reset time (1)	0 to 3600 seconds. 0 seconds: PD control
		Rste time (D)	0 to 1200 seconds. 0 seconds: PI control
		MV limit	Lower limit: -5.0 to upper limit \% Upper limit: Lower limit to $\mathbf{+ 1 0 5 . 0 \%}$
		Manual reset	0.0 to 100.0\%

	PID controls	Nu mber of PID sets	16 sets for program operation (9 segment unique sets + 7 sets for automatic zone selection)
		PID set selection	Segment designation/automatic zone seiection can be switched by program operation.
		MV change	0.1 to 110.0\%/0.1 seconds
		Auto-tuning	Automatic setting of PiD value by limit cycle system
		ON-OFF control differential	0 to 1000 U
	Direct/reverse action switching	Possible	
$\begin{aligned} & \text { on } \\ & \frac{1}{3} \\ & \frac{0}{3} \\ & 0 \end{aligned}$	Auxiliary output	Output types	SP1, PV1, deviation 1, MV1, SP2, PV2, deviation 2, O_{2} sensor mV value
		Scaling	Possible
	Current output (SG) CH1, CH2 auxiliary outputs CH1, CH2	Output current: Allowable load resistan Output accuracy: Output resolution: Max. output current: Min. output current: Output updating cycle: Open terminai voitage:	4 to 20 mA dc 600 ohm max. (under operating conditions) $\pm 0.1 \%$ FS max. (under standard conditions) $1 / 10000$ 21.6 mA dc 2.4 mA dc 0.1 seconds 25 V max.
	Voltage output (6D) CH1, CH2	Allowable load resistan Load current adjustme Variable open terminal OFF leakage current: Output response time: Output resolution: Time-proportional cycle:	ce: 600Ω max. (under operating conditions) t: 2 to 22 mA variable voltage: 25 V max. 100 PA max. At ON-OFF 600Ω load: 0.5 ms max. At OFF-ON 600Ω load: 0.5 ms max. $1 / 1000$ 1 to 240 seconds variabie
	Open-collector output (8D) CH1 CH2	External supply voltage Max. load current OFF leakage current: ON residual voltage: Output resolution: Time-proportional cycl	```12 to 24 Vdc \(100 \mathrm{~mA} / \mathrm{load}\) 0.1 mA max. 2 V max. 1/1000 1 to 240 seconds variable```
Event outputs	Open-collector	External supply voltage Max. Ioad current: Max. common current: OFF leakage current: ON residual voltage	12 to 24 V dc 70 mAload 500 mA 0.1 mA max. 2 V max.
	Event types	PV type	PV, deviation, w/deviation standby, absoiute value deviation, w/ absoiul deviation standby, PV rate-of-change, SP, MV, G.Soak absolute valued w/G.Soak absolute value deviation standby, PV1 constant operation, PV2 constant operation
		Time type	Time events, RAMP-E time monitor, segment time, program time
		Code type	Code event, code event w/ timer, program No. binary code, segment No. binary code, program No. BCD code, segment No. BCD code
		Mode type	Unique segment, RUN+HOLD+END+FAST, HOLD, READY+READY FAST, END G.Soak standby, MANUAL, AT executing, FAST+ READY FAST, console operation in progress, RUN, advance, all alarms, PV range alarm, controller alarm, O_{2} sensor error, low battery voltage
	Event hysteresis	In case of PV type set,	0 to 1000 U
	Event ON delay	0.0 to 3000.0 can be s	to four events
Q00000$E$$E$$E$00	RS-485	Network	Multidrop This controller is provided with only slave instrument functionality excep connected to ST221 (dedicated display device). 1 to 16 units max. (DIM) 1 to 31 units max. (CMA, SCM)
		Data flow	Half dupiex
		Synchronization	Start-stop synchronization
		Transmission system	Balanced (differential)
		Data iine	Bit seriai
		Signal line	5 transmit/receive lines (3-wire connection also possible)
		Transmission speed	1200, 2400,4800, 9600 bps
		Transmission distance	500 m max. (totai) (300 m max. for MA500 DIM connection)
		Other	Conforming to RS-485 interface specifications

	Operating conditions	Amblent temperature range		0 to $50^{\circ} \mathrm{C}$ (ambient temperature at the bottom side of case when gang-mounted)			
		Ambient humidity range		10 to 90\%RH (condensation not allowed)			
		Rated power voltage		100 to 240 V ac			
		Allowable power voltage		90 to 264 V ac			
		Power frequency		$50 \pm 2 \mathrm{~Hz}$, or $60 \pm 2 \mathrm{~Hz}$			
		Vibration resistance		0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}$			
		Shock resistance		0 to $9.80 \mathrm{~m} / \mathrm{s}^{2}$			
		Mounting angle		Reference plane (vertical) ± 10 degrees			
	Transport/storage conditions	Ambient temperature range		-20 to $+70^{\circ} \mathrm{C}$			
		Ambient humidity range		10 to 95% RH (condensation not allowed)			
		Vibration resistance		0 to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 hours each in X, Y and Z directions)			
		Shock resistance		0 to $490 \mathrm{~m} / \mathrm{s}^{2}$ (3 times vertically)			
		Package drop test		Drop height: 60 cm (1 angle, 3 edges and 6 planes; free fall)			
	Terminal ecrew	M3.5 self-tapping screws					
	Terminal screw tightening torque	0.76 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$					
	Mask/case materials	Mask Multilon			Case: Multilon		
	Mask/case color	Mask: Dark gray (Munsell5Y3.5/1)			Case: Light gray (Munsell2.5Y7.5/1)		
	Installation	Specially desioned mountina bracket					
	Weight	Approx. 1.5 kg					
	Item	Model No.	Q'tv		Item	Model No.	Q'ty
	Unit Indicating label	-	1		Soft dust-proof cover	61446141-001	-
	Mounting bracket	81446044-001	1 set (2 p'c				
	User's Manual	CP-UM-5017E	1		Lithium battery set	81448140-001	Approx. 200 g
					Memory csrd (RAM, battery replacement not possible)	SKMO08A SKM016A SKM064A	Approx. 30 g

Table 1 Input Types and Ranges (selectable in setup)

- Thermocouple

Input Type			Input Range (FS)		Accuracy (under standard conditions)	
Symbol	Code	Range No.	${ }^{\circ} \mathrm{C}$	"F		
K (CA)	K46	16	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \% \mathrm{FS}$	
K (CA)	K09	0	0.0 to 1200.0	0 to 2400	$\pm 0.1 \%$ FS	
K (CA)	K08	1	0.0 to 800.0	0 to 1600	$\pm 0.1 \% \mathrm{FS}$	
K (CA)	K04	2	0.0 to 400.0	0 to 750	$\pm 0.1 \% \mathrm{FS}$	
E (CRC) ${ }^{-}$	E08	3	0.0 to 800.0	0 to 1800	$\pm 0.1 \%$ FS	
J (IC)	J08	4	0.0 to 800.0	0.0 to 1600	$\pm 0.1 \% \mathrm{FS}$	
T (CC)	T44	5	-200.0 to +300.0	-300 to +700	$\pm 0.1 \%$ FS	$\pm 0.3 \%$ FS between $-200^{\circ} \mathrm{C}$ to $-45^{\circ} \mathrm{C}$
B (PR30-6)	B18	6	0.0 to 1800.0	0 to 3300	$\pm 0.1 \% \mathrm{FS}$	$\pm 4.0 \%$ FS between 0 to $260^{\circ} \mathrm{C}, \pm 0.15 \%$ FS between 260 to $800^{\circ} \mathrm{C}$
R (PR13)	R16	7	0.0 to 1600.0	0 to 3100	$\pm 0.1 \% \mathrm{FS}$	
S (PR1 0)	S16	8	0.0 to 1600.0	0 to 3100	$\pm 0.1 \%$ FS	
W (WRe5-26)	W23	9	0.0 to 2300.0	0 to 4200	$\pm 0.1 \% \mathrm{FS}$	
W (WRe5-26)	W14	10	0.0 to 1400.0	0 to 2552	$\pm 0.1 \% \mathrm{FS}$	
PR40-20	D19	11	0.0 to 1900.0	0 to 3400	$\pm 0.2 \%$ FS	$\pm 0.9 \%$ FS between 0 to $300^{\circ} \mathrm{C}, \pm 0.5 \%$ FS between 300 to $800^{\circ} \mathrm{C}$
N	U13	12	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
PLII	Y13	13	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
Ni-Ni.Mo	Z13	14	0.0 to 1300.0	32 to 2372	$\pm 0.1 \% \mathrm{FS}$	
Golden iron chromel	206	15	0.0 to 300.0	K (K: Kelvin)	$\pm 0.4 \% \mathrm{FS}$	

- Resistance temperature detector (RTD)

Input Type			Input Range (FS)		Accuracy (under standard conditions)	
Symbol	Code	Range No.	${ }^{\circ} \mathrm{C}$	'F		
JIS'89Pt100 (IEC Pt100 ת)	F50	64	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \% \mathrm{FS}$	
	F46	65	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \% \mathrm{FS}$	
	F32	66	-100.0 to +150.0	-150.0 to +300.0	$\pm 0.1 \% \mathrm{FS}$	
	F36	67	-50.0 to +200.0	-50.0 to +400.0	$\pm 0.1 \%$ FS	
	F33	68	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	F01	69	0,0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	F03	70	0.0 to 300.0	0.0 to 500.0	$\pm 0.1 \% \mathrm{FS}$	
	F05	71	0,0 to 500.0	0.0 to 900.0	$\pm 0.1 \%$ FS	
JIS'89JPt100	P50	96	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \% \mathrm{FS}$	
	P46	97	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \% \mathrm{FS}$	
	P32	98	-100.0 to +150.0	$-150,0$ to +300.0	$\pm 0.1 \% \mathrm{FS}$	
	P36	99	-50.0 to +200.0	-50.0 to +400.0	$\pm 0.1 \%$ FS	
	P33	100	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	Pol	101	0.0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	P03	102	0.0 to $\mathbf{3 0 0 . 0}$	0.0 to 500,0	$\pm 0.1 \% \mathrm{FS}$	
	P05	103	0,0 to 500.0	0.0 to 900,0	$\pm 0.1 \%$ FS	

- DC current, DC voltage

Input Type			Input Range (FS)		Accuracy (under standard conditions)	
Svmbol	Code	Ranae No.				
mA (linear)	C01	48	4 to 20 mA	Programmable range -19999 to +20000 (decimal point position can be changed)	$\pm 0.1 \%$ FS	
	Z51	52	2.4 to 20 mA		$\pm 0.1 \%$ FS	
mV (linear)	M01	49	0 to 10 mV		$\pm 0.1 \%$ FS	
	L02	50	-10 to +10 mV		$\pm 0.1 \%$ FS	
	-	51	0 to 100 mV		$\pm 0.15 \% \mathrm{FS}$	
mA (linear)	C01	128	4 to 20 mA	Programmable range -19999 to +20000 (decimal point position can be changed)	$\pm 0.15 \%$ FS	
	Z51	134	2.4 to 20 mA		$\pm 0.1 \%$ FS	
V (linear)	-	129	0 to 1 V		$\pm 0.1 \%$ FS	
	-	130	-1 to +1 V		$\pm 0.1 \%$ FS	
	Vol	131	1 to 5 V		$\pm 0.1 \%$ FS	
	-	132	0 to 5V		$\pm 0.1 \%$ FS	
	-	133	0 to 10 V		$\pm 0.1 \%$ FS	
O_{2} sensor*	-	135	0 to 1250 mV Carbon potential (CP value) indication range: $0.000 \text { to } 4.000 \% \mathrm{C}$ (Note that PID control is calculated in input range 0.000 to 2.000% C.) O_{2} partial pressure $\left(\mathrm{PO}_{2}\right)$ indication range: 0.000 to $1.500 \times 10-20 \mathrm{~atm}$		$\pm 0.1 \%$ FS	When converted to mV value

* - Any O_{2} sensor made by Marathon Monitors, Cambridge, Corning, AACC (Advanced Atmosphere Control Corporation), and Furnace Control can be used.
- PV2 is fixed for the O_{2} sensor in the case of models supporting carbon potential,

! Handling Precautions

- The unit of code Z06 is Kelvin (K).
- The PV lower limit alarm does not occur with codes F50 and P50.
- The number of digits past the decimal point for DC current and DC voltage is programmable within the range 0 to 4.
- The PV upper limit alarm is output by the O_{2} sensor when the voltage exceeds 1375 mV . The PV lower limit alarm, however, is not output.

MODEL SELECTION GUIDE

Key \#- I- II - III - IV - V

	I	II	III	IV	V	
Key No.	-	Number of PV inputs	Carbon Potential	Option	Additions	Specifications
DCP552						Digital Programmable Controller (2-loop model)
	E					Universal Output
		2				Two Inputs
			0			None
			1			Oxygen Sensor Input for Carbon Potential
				0		None
				1		1 Auxiliary output
				2		2 Auxiliary outputs, Communications
					00	None

EXTERNAL DIMENSIONS
(Unit: mm)

PANEL CUTOUT
(Unit: mm)

Input

Note: If voltage mode signals are input to PV input CH 1 (terminal Nos. (55), (56) and input CH 2 (terminal Nos. (36), (59) for current input by mistake, a large current might flow and cause the controller to malfunction. Before wiring to the current input terminals on the DCP552, make sure that current input signals are output correctly within the range 4 to 20 mA .

Control output

Auxiliary output

INTERNAL CIRCUIT OF EXTERNAL SWITCH INPUT

COMMUNICATIONS I/O (OPTION)

WIRING PRECAUTIONS

1. Isolating Inputs and Outputs Inside the Controller

Solid lines - show isolated items.
Dotted lines - - - - - show non-isolated items.

PV input CH1		Control output CH1
PV input CH2		Auxiliary output CH1
Loader communications	Digital circuit	Control output CH2
External switch input		
Communications		Event output
Memory card input		

2. Noise Countermeasures for Instrument Power Supplies

(1) Reducing noise

Connect the DCP552 to a single-phase power supply for instruments, and take measures to prevent the influence of electrical noise.

(2) When there is a lot of noise

If there is a lot of electrical noise, we recommend inserting an insulating transformer in the power circuit and using a line filter.

3. Noise Generating Sources and Countermeasures

Generally, the following generate electrical noise:
Relays and contacts, electromagnetic coils, solenoid valves, power lines (in particular, 90 Vac min.) induction loads, inverters, motor

WARRANTY / REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability
commutators, phase angle control SCR, radio communications equipment, welding equipment, high-voltage ignition equipment.

(1) Fast-rising noise

CR filters are effective in countering fast-rising noise.
Recommended CR filter:
Yamatake Corporation Model No. 81446365-001

(2) Noise with a high wave height

Varisters are effective in countering noise with a high wave height. However, note that the varister may become short-circuited when trouble occurs. Pay attention to this when providing a varister on a controller.
Recommended varister:
Yamatake Corporation Model No. 81446366-001 (for 100 Vac)
81446367-001 (for 200 Vac)

4. Ground

Use only the FG terminal 52 or 53 on the DCP552 for grounding. Do not ground across other terminals. When it is difficult to ground shielded cable, prepare a separate GND terminal plate (earth bar).
Ground type: $\quad 100 \Omega$ max.
Ground cable: $\quad 2 \mathrm{~mm}^{2} \mathrm{~min}$. annealed-copper wire (AWG14)
Cable length: Max. 20 m

5. Precautions During Wiring

(1) After providing anti-noise measures, do not bundle primary and secondary power leads together, or pass them through the same piping or wiring duct.
(2) Maintain a distance of at least 50 cm between I/O signal leads or communications leads and the power lead. Also, do not pass these leads through the same piping or wiring duct.

6. Inspection After Wiring

After wiring is completed, be sure to inspect and check the wiring state. Wrong wiring may cause controller malfunction or accidents.
and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.
While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Sensing and Control

Honeywell Inc.
11 West Spring Street
Freeport, IL 61032

