I PC5000 S/ D

Universal Programmer

Ovenview

The IPC5000 is a high-functional Single or Dual loop programmer retaining all the reliability, simplicity, and compatibility. This programmer is operated by touchscreen in 5.7 inch LCD monitors and controls in various kinds of applications such as:

- Furnace \& Industrial Oven
- Autoclave
- Test Chamber
- Environmental Room / Clean Room
- Retort Oven
- Pressure Cooker
- Dyeing Machine
- Reactor

Features

- 5.7 inch LCD Touch Screen

Configuration \& operation will be done by touch screen function keys in LCD display.

- Universal I nput(s)

Analog input(s) is a low-level type (s), which accepts Thermocouple, RTD, mA, voltage type. (See Table 1)

- 0.1\% Input Accuracy

Analog input(s) has typical accuracy of \pm 0.1% of full-scale input.

- 12 DIs/ 12 Dos

12 points of digital inputs can be connected to non-voltage contact (relay contact) or open collector (sink current toward 0 V), and they are allocated to predefined actions. 12 digital outputs can be

assigned to 4 different types of events (MODE, Alarm, Time and PV)

- 100 Programs, 2000 segments

100 Programs can be programmed within 100 segments for each and 2000 segments in total. 10 Links are offered, and each Link can link up to 6 programs.

- Heat/ Cool Capability

Each control loop provides split range control with independent PID tuning constants - one for heating, one for cooling - plus mixed output forms.

- Ethernet Communication

A communication link is provided between IPC5000 and a host computer or PLC via RS-485 (Modbus® RTU) or Ethernet (Modbus TCP) communications option.

- I P65 Front Face Protection

IP65 rated front face permits use in applications where it may be subjected to
moisture, dust conditions.

- Asynchronous/ Synchronous Mode

In Dual-Channel type, two loop controls can be run independently with different program and also they can be operated simultaneously with one single program.

- Multi-Language Prompts

3 different languages will be selected via configuration and displayed.

- PC Configuration

A free-ware will be offered and IPC5000 can be configured and operated thru this software on PC.

- Real Time Clock

IPC5000 provides accurate time and makes it possible to schedule running operation.

- Program data changeable

In RUN mode, the program data are changeable.

Honeywell

Spec ific ations			
Model		IPC5000S	IPC5000D
Display			
Digital Indication \& Display	Display Type	5.7 inch LCD (STN Negative, Blue)	
	Screen Size (Unit: mm/inch)	$\frac{115.17}{4.534}(W) \times \frac{86.37}{3.4}(H)$	
	Resolution	320(W) x 240(H)	
	Back Light	LED, White (Luminous Intensity: $20 \mathrm{~cd} / \mathrm{m}^{2}$)	
	Display Size	40 lines x 30 lines (8x8 dots characters)	
	Display Color	Blue characters on white background	
	Display Language Cap.	Up to 3 languages	
	Operation	Analog touch panel (Actuation force: $10 \mathrm{~g}-80 \mathrm{~g}$)	
General			
Rated Power Supply Voltage		100 to 240 V AC $50 / 60 \mathrm{~Hz}$, 37VA Max.	
Inrush Current when power supply turns on		Lower than 50 A	
Insulation Resistance		Higher than 50Ms under DC 500V megger during power terminal and PE terminal	
Withstand Voltage		1500 V AC $50 / 60 \mathrm{~Hz}$ for 1 min across power terminal and PE terminal	
Reference	Ambient Temperature	$23 \pm 2{ }^{\circ} \mathrm{C}$	
	Relative Humidity	$60 \pm 5 \% \mathrm{RH}$	
	Power Voltage (Vac)	110 V AC	
	Power Frequency	$50 \pm 1 \mathrm{~Hz}$ or $60 \pm 1 \mathrm{HZ}$	
	Vibration Resistance	$0 \mathrm{~m} / \mathrm{s}^{2}$	
Operative Limits	Ambient Temperature	$0 \text { to } 50^{\circ} \mathrm{C}$	
	Relative Humidity	10 to 90% RH (non-condensing)	
	Power Voltage (Vac)	85 to 264V AC	
	Power Frequency	$50 \pm 2 \mathrm{~Hz} \text { or } 60 \pm 2 \mathrm{~Hz}$	
	Vibration Resistance	0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for 2 hours each)	
Transportation \& Storage	Ambient temperature	$-20 \text { to }+70^{\circ} \mathrm{C}$	
	Relative Humidity	$10 \text { to +95\% RH (non-condensing) }$	
	Vibration Resistance	0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for 2 hours each)	
Exterior		Case and front panel: plastic	
Mounting		Panel-mount	
Exterior Size (unit: $\frac{m m}{\text { inch }}$)		$\frac{196}{7.717}(W) \times \frac{131}{5.157}(H) \times \frac{154}{6.063}(D)$	
Panel Cutout (unit: $\frac{m m}{\text { inch }}$)		$\frac{185.5}{7.303} \frac{ \pm 0.5}{ \pm 0.02}(W) \times \frac{120.5}{4.744} \frac{ \pm 0.5}{ \pm 0.02}(H)$	

Honeywell

Spec ific ations			
Model		IPC5000S	IPC5000D
Input \& Output			
Analog Input	Number of point	1 point (Universal input)	2 points (Universal input)
	Type	TC $: K, J, R, S, B, E, T, N(J I S / I E C), W, C$ RTD $:$ Pt100 (JIS/IEC), JPt100 (JIS) Linear $:$ VOLTAGE $0 \sim 10 V, 0 \sim 5 \mathrm{~V}, 1 \sim 5 \mathrm{~V}$ CURRENT $0 \sim 20 \mathrm{~mA}, 4 \sim 20 \mathrm{~mA}$ (For details, refer to Table 1-1)	
	Sampling Rate	100 ms	
	Indication Accuracy	$\pm 0.1 \% \mathrm{FS} \pm 1$ digit (Accuracy is variable according to input type or range)	
	Cold junction accuracy	$\pm 1.0{ }^{\circ} \mathrm{C}$ (under standard conditions)	
	Input bias	-99.9 ~ +99.9 variable	
	Digital filter	$0 \sim 120 \sec$ (0: filter off)	
	Square-root Extraction	Low-cut: 0.1~5.0\% of input (in case of voltage input from orifice or pressure sensor)	
	Compensation	Linearity / Approximation (1) Segment break-point: 1 to 10 of total range (2) Linearity Bias : -10000.0~10000.0 Compensation Set : -5.0~105.0\% of input range span (3) Approximation Bias: -5.0~105.0\% of input range span Compensation Set : -5.0~105.0\% of input range span	
Analog Output (Transmission output) : Optional	Object	PV1, SP1, MV1, DEV1	PV1, SP1, MV1, PV2, SP2, MV2, DEV 1/ 2
	Output type	4~20mA DC	
	Output accuracy	+/- 0.1% of span	
	Update Rate	100 ms	
Digital Inputs (External switch input)	Number of point	12 points	
	Connectable type	No-Voltage contact (relay contact) Open collector (sink current toward OV)	
	Allocation (Fixed)	RUN/STOP, HOLD, ADV, Trouble inputs, Program number (For details, refer to Table 1-2)	
	Trouble input	4 points	2 points
	Trouble message	32 messages (Each trouble can have its message), Max. 22 characters	
	Sampling cycle	100 ms	

Honeywell

Spec ifications

\section*{| Mod | |
| :--- | :---: |
| I nput \& Output | |}

Digital Output (Event Output)	Number of point		12 points
	Output Type		Open collector
	External supply voltage		MAX DC30V
	Max. load current		MAX $100 \mathrm{~mA} / 1 \mathrm{ch}$
	Time Event		
	Event Code		Code 0 (OFF), Code 1 (ON), Code 2 (On-Delay \& Cut-Back)
	Object		Segment Time
	PV Event		
	Event code		Code 11 - Code 38
	Object		Set Point (SP) / Process Variable(PV) Destination(Target) Value (DV) / Manipulated value (MV)
	Operating point		Absolute value (ABS) / Deviation (DEV) / MAX, MIN value
	Operating Condition		Band/ LOW/HIGH
	Range	Absolute	-19999.0~20000.0 Unit
		Deviation	-19999.0~20000.0 Unit
		Differential	$0 \sim 1000.0$ Unit
	On delay time		0 ~ 99 sec
	Mode Event		
	Event code		Code 41 - Code 60
	Object		RUN, HOLD, ADV, WAIT, MAN, TUNE, READY, FIX, STOP, END, TRBL, DOWN, UP
	Alarm Event		
	Event Code		Code 61 - Code 80
	Object		INNER : Object = PV, SP, DV, MV Operating point = ABS, DEV, MAX \& MIN value Operating condition = Band/LOW/HIGH Range $:$ Same with PV Event DIAGNOSIS $: ~ P V ~ i n p u t ~ b u r n-o u t ~$ FAIL $:$ Instrument fail (Type: Memory, Power failure)
	Action		RUN: Operation in RUN mode ALL: Operation in all cases
Auxiliary Analog Input : Optional	Number of point		1 point
	Input type		$\mathrm{mA}(4 \sim 20 \mathrm{~mA}), \mathrm{V}(0 \sim 10 \mathrm{~V}, 1 \sim 5 \mathrm{~V})$
	Sampling Rate		200 ms
	Input accuracy		$\pm 0.3 \% \mathrm{FS} \pm 1$ digit

[^0]

Honeywell

Spec ific ations				
Model			IPC5000S	IPC5000D
Control				
PID		Algorithm	PID-A / PID-B / DUP-A / DUP-B	
		Proportional Band (P)	Proportional Band: 0.1 ~ 9999\% GAIN: 0.001 ~ 1000	
		Integral Time (1)	$0.00 \sim 10.00 \mathrm{~min}$	
		Derivative Time (D)	$0.02 \sim 50.00 \mathrm{~min}$	
		Manipulated Value Limit (MV)	Low-limit: -5.0 to High-limit\% High-limit: Low-limit to $+105.0 \%$	
		Manual Reset	-100 to +100	
		Maximum PID groups	8 groups	Loop 1:0 groups, 8 groups Loop 2 : 0 groups, 8 groups
		PID Group Selection	Segment specified, Automatic zone selectable during program run	
		Auto Tuning	Accutune II: Automatic setting of PID value by limit cycle method.	
		Fuzzy Control Function	Fuzzy Control function	
		On-off Control Diff.	$0 \sim 1000$	
Control Direction			Selection is settable (Direct/Reverse)	
HEAT/COOL Control			HEAT/COOL available	HEAT/COOL available for each CH
Operation Mode			Auto/Manual operation is switcheable *Manual Output: i) Bumpless ii) Preset value: -5.0~105.0\%	
Output	Output Set	TYPE	Provided with 9 types (refer to Table1-3)	
		Signals	4~20mA DC	
	Current	Accuracy	+/-0.1\% of span	
		Update cycle	100 msec	
	Voltage Pulse	Open Time Terminal Voltage	Lower than 15V DC (20mA)	
		Time Proportional Cycle	1 ~ 240 sec	
	Relay	Signal	NC, NO, and common terminals (SPDT)	
		Contact Rating	250VAC, 3A or 30VDC, 3A (Resistance load)	
	Open	External Supply Voltage	MAX DC30V	
		Max. Load Current	MAX $100 \mathrm{~mA} / 1 \mathrm{ch}$	

Honeywell

Spec ifications					
Model			IPC5000S		IPC500
Control Operation					
Program	READY		Stand-by status before program start (Control stop)		
	RUN		Program running status * Program Start Quick Start by RUN/STOP key or external contact relay input Timer Start by scheduled time		
	HOLD		Status to hold program run by force		
	WAIT		Waiting status during the WAIT function enabled		
	END		Status after program completed (Control stop)		
	BREAK		POWER FAILURE or Stop status (Control stop)		
	TUNE		AUTO-TUNING status		
Fix Control			Stand-by status before program start (Control stop)		
	RUN		Program running status * Program Start Quick Start by RUN/STOP key or external contact relay input Timer Start by scheduled time		
	HOLD		Status to hold program run by force		
	tune		AUTO-TUNING status		
Communication					
Communication	$\begin{aligned} & \text { RS-232 } \\ & \text { (Basic) } \end{aligned}$	Speed	9600 or 19200		
		Parity check	NONE		
		Bit length	8		
		Stop Bits	1		
	RS-485 (Option)	Data Bits per Character	Bit transfer order	LSB	
			End of message		acters
		Protocol	Modbus TCP		
		Port	One 10Base-T(RJ-	nnecto	
		Cabling Type	UTP category 2 or Note) UTP: Unshie	wiste	

Honeywell
Table 1 - Input Actuations

I nput type		I nput Code	Range		Measurement Accuracy		
		\bigcirc	OF				
Thermocouples	K (CA)		K1	-200.0~200.0	-328.0~392.0	+/-0.1\% FS	Below $0 \bigcirc \mathrm{C}:+/-0.2 \% \mathrm{FS}$
		K2	$0.0 \sim 1200.0$	32.0~2192.0	+/-0.1\% FS		
		K3	0.0~800.0	32.0~1472.0	+/-0.1\% FS		
		K4	0.0~400.0	32.0~752.0	+/-0.1\% FS		
	J (IC)	J	0.0~800.0	32.0~1472.0	+/-0.1\% FS		
	R	R	0.0~1600.0	32.0~2912.0	+/-0.1\% FS		
	S	S	0.0~1600.0	32.0~2912.0	+/-0.1\% FS		
	B	B	0.0~1800.0	32.0~3272.0	+/-0.1\% FS	$+/-4.0 \%$ FS at 0 to $260 \circ$ C $+/-0.15 \% \mathrm{FS}$ at 260 to $800{ }^{\circ} \mathrm{C}$	
	E (CRC)	E	0.0~800.0	32.0~1472.0	+/-0.1\% FS		
	T (CC)	T	-200.0~300.0	-328~572	+/-0.1\% FS	$+/-0.3 \% \mathrm{FS}$ at -200 to -450 C	
	N	N	0.0~1300.0	32~2372	+/-0.1\% FS		
	W	W1	0.0~1200.0	32~2192	+/-0.1\% FS		
		W2	0.0~2300.0	32~4172	+/-0.1\% FS		
	C	C	0.0~2300.0	32~4172	+/-0.1\% FS		
RTD	Pt100 (JIS/IEC)	Pt1	-200.0~500.0	-328.0~932.0	+/-0.1\% FS		
		Pt2	-200.0~200.0	-328.0~392.0	$+/-0.1 \% \mathrm{FS}$		
		Pt3	-100.0~150.0	-148.0~302.0	+/-0.1\% FS		
		Pt4	-50.0~200.0	-58.0~392.0	+/-0.1\% FS		
		Pt5	-40.0~60.0	-40.0~140.0	+/-0.2\% FS		
		Pt6	0.0~100.0	32.0~212.0	+/-0.2\% FS		
		Pt7	0.0~300.0	32.0~572.0	+/-0.1\% FS		
		Pt8	0.0~500.0	32.0~932.0	+/-0.1\% FS		
	JPt100 (JIS)	JPt1	-200.0~500.0	-328.0~932.0	+/-0.1\% FS		
		JPt2	-200.0~200.0	-328.0~392.0	+/-0.1\% FS		
		JPt3	-100.0~150.0	-148.0~302.0	+/-0.1\% FS		
		JPt4	-50.0~200.0	-58.0~392.0	+/-0.1\% FS		
		JPt5	-40.0~60.0	-40.0~140.0	+/-0.2\% FS		
		JPt6	0.0~100.0	32.0~212.0	+/-0.2\% FS		
		JPt7	0.0~300.0	32.0~572.0	+/-0.1\% FS		
		JPt8	0.0~500.0	32.0~932.0	+/-0.1\% FS		
DC Voltage	0~10V	DCV1	Configurable Range -19999~20000 (DP position is configurable)		+/-0.1\% FS		
	0~5V	DCV2			+/-0.1\% FS		
	1~5V	DCV3			+/-0.1\% FS		
DC Current	$0 \sim 20 \mathrm{~mA}$	MA1			+/-0.1\% FS		
	4~20mA	MA2			+/-0.1\% FS		

Honeywell
Table 2 - The Function Table of Extemal Switch Input (Digital Input)

DI No.	Function	Detection way
DI 01	RUN/STOP (RUN $\leftarrow \rightarrow$ STOP)	Leading edge
DI 02	HOLD	ON status
DI 03	ADV	Leading edge
DI 04	Trouble Message Input 1	ON status
DI 05	Trouble Message Input 2	ON status

- IPC5000 Single Channel Type

DI No.	Function	Detection way
DI 06	Trouble Message Input 3	ON status
DI 07	Trouble Message Input 4	ON status

- IPC5000 Dual Channel Type

DI 06	DI 07	Channel Selection
OFF	OFF	Both CH1 and CH2 Disabled
OFF	ON	CH1 Disabled, but CH2 Enabled
ON	OFF	CH1 Enabled, but CH2 Disabled
ON	ON	Both CH1 and CH2 Enabled

- Program Selection

DI 08	DI 09	DI 10	DI 11	DI 12	Pattern Selection
OFF	OFF	OFF	OFF	OFF	Select Program No. 00
OFF	OFF	OFF	OFF	ON	Select Program No. 01
OFF	OFF	OFF	ON	OFF	Select Program No. 02
OFF	OFF	OFF	ON	ON	Select Program No. 03
OFF	OFF	ON	OFF	OFF	Select Program No. 04
OFF	OFF	ON	OFF	ON	Select Program No. 05
OFF	OFF	ON	ON	OFF	Select Program No. 06
OFF	OFF	ON	ON	ON	Select Program No. 07
OFF	ON	OFF	OFF	OFF	Select Program No. 08
OFF	ON	OFF	OFF	ON	Select Program No. 09
OFF	ON	OFF	ON	OFF	Select Program No. 10
OFF	ON	OFF	ON	ON	Select Program No. 11
OFF	ON	ON	OFF	OFF	Select Program No. 12
OFF	ON	ON	OFF	ON	Select Program No. 13
OFF	ON	ON	ON	OFF	Select Program No. 14
OFF	ON	ON	ON	ON	Select Program No. 15
ON	OFF	OFF	OFF	OFF	Select Program No. 16
ON	OFF	OFF	OFF	ON	Select Program No. 17
ON	OFF	OFF	ON	OFF	Select Program No. 18
ON	OFF	OFF	ON	ON	Select Program No. 19
ON	OFF	ON	OFF	OFF	Select Program No. 20
ON	OFF	ON	OFF	ON	Select Program No. 21
ON	OFF	ON	ON	OFF	Select Program No. 22
ON	OFF	ON	ON	ON	Select Program No. 23
ON	ON	OFF	OFF	OFF	Select Program No. 24
ON	ON	OFF	OFF	ON	Select Program No. 25
ON	ON	OFF	ON	OFF	Select Program No. 26

DI 08	DI 09	DI 10	DI 11	DI 12	Pattern Selection
ON	ON	OFF	ON	ON	Select Program No. 27
ON	ON	ON	OFF	OFF	Select Program No. 28
ON	ON	ON	OFF	ON	Select Program No. 29
ON	ON	ON	ON	OFF	Select Program No. 30
ON	ON	ON	ON	ON	Select Program No. 31

Model Interpretation

Instruction

- Select the desired key number.

The arrow to the right marks the selection available.

- Make one desired selection each from Table I through III.
$A \operatorname{dot}(\bullet)$ denotes unrestricted availability.

KEY NUMBER

Description		Selection	Availability	
Control Loop	Single Loop Control Dual Loop Control	IPC5000S 	\downarrow	IPC5000D

TABLE I - I nput \& Outputs

Input	Standard Input (2 Analog Inputs + 12 Digital Inputs)	$0 _$	\bullet	\bullet
Output	Standard Output (2 Analog Outputs + 12 Digital Outputs)	-0	\bullet	\bullet
	Standard Output + 2 Analog Outputs	-1	\bullet	

TABLE II - Options

Communication	$\begin{aligned} & \text { RS-232C } \\ & \text { RS-232C, RS-485 (Modbus RTU) } \\ & \text { RS-232C, Ethernet (Modbus TCP) } \end{aligned}$	$\begin{aligned} & 0_{1} \\ & 1_{1} \\ & 2_{1} \end{aligned}$	-	-
Manual \& Cable	None Manual CD Manual CD, RS-232C Cable (connection with PC)	$\begin{array}{r} 0 \\ -1 \\ -1 \\ -2 \end{array}$	-	

TABLE III - Language

Display Language	English/Korean	0	-	-

Honeywell
Extemal Dimension

Wring Diagram

- Single Channel (IPC5000S)

Digital Input Digital Output Analog I/O Communication Supply

No.	Terminal name	Function
1	DI_COM	
2	DI1	Digital input1
3	DI2	Digital input2
4	DI3	Digital input3
5	DI4	Digital input4
6	D15	Digital input5
7	DI6	Digital input6
8	DI_COM	
9	DI7	Digital input7
10	DI8	Digital input8
11	D19	Digital input9
12	DI10	Digital input10
13	DI11	Digital input11
14	DI12	Digital input12
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & \hline \end{aligned}$	Not Connected	

No.	Terminal name	Function
$\mathbf{1}$	DO_COM1	
2	DO1	Digital output1
$\mathbf{3}$	DO2	Digital output2
4	DO3	Digital output3
5	DO4	Digital output4
6	DO5	Digital output5
7	DO6	Digital output6
8	DO_COM2	
9	DO7	Digital output7
10	DO8	Digital output8
11	DO9	Digital output9
12	DO10	Digital output10
13	DO11	Digital output11
14	DO12	Digital output12
15	N.C.	Relay 1
16	N.O.	
17	COM	Relay 2
18	N.C.	
19	N.O.	
20	COM	

No.	Terminal name	Function
1	Output1(+)	$4 \sim 20 \mathrm{~mA}$,
2	Output1(-)	Voltage Pulse
3	Output2(+)	$4 \sim 20 \mathrm{~mA}$,
4	Output2(-)	Voltage Pulse
5		
6	Not	
7	Connected	
8		
9	Input1 (+)	RTD(A),mA,V,TC
10	Input1 (-)	RTD(b)
11	Input1(B)	RTD(B)
12		
13		
14		
15		
16	Not	
17	Connected	
18		
19		
20		

- Dual Channel Type (IPC5000D)

Wananty / Remedy

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use. While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

[^0]: * The analog input option has no functional assignment, available for future purpose only.

