UMC800 Control Builder Function Block Reference Guide

Doc. No.:	51-52-25-64
Release:	D
Last Revision Date:	1/01

Notices and Trademarks

Copyright 2001 by Honeywell Release D January, 2001

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Contact your local sales office for warranty information. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace without charge those items it finds defective. The foregoing is Buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

While we provide application assistance personally, through our literature and the Honeywell web site, it is up to the customer to determine the suitability of the product in the application.

Sensing and Control Honeywell 11 West Spring Street Freeport, Illinois 61032

UMC800 Universal Multi-loop Controller is a U.S. trademark of Honeywell Other brand or product names are trademarks of their respective owners.

About This Document

Abstract

The **"Control Builder" configuration software** program is used for UMC800 Controller and Operator Interface configuration and operates on a Windows '95TM- or Windows NT-based PC. The software program uses graphic symbols and line drawing connections to create custom control strategies. Menus are provided in the software to allow selection of screens for the operator interface and to customize screen access methods and operator keys. Completed configurations are loaded into the control system using a dedicated communication port in the controller.

References

The following list identifies all documents that may be sources of reference for material discussed in this publication.

Document Title	Doc ID
UMC800 Controller Technical Overview	51-52-03-24
UMC800 Controller Installation and User Guide	51-52-25-61
UMC800 Operator Interface User Guide	51-52-25-62
UMC800 RS232 Communications Manual	51-52-25-76
UMC800 Modbus® Communications Manuals	51-52-25-87

Contacts

World Wide Web

The following lists Honeywell's World Wide Web sites that will be of interest to our industrial automation and control customers.

Honeywell Organization	WWW Address (URL)
Corporate	http://www.honeywell.com
Sensing and Control	http://www.honeywell.com/sensing
International	http://www.honeywell.com/Business/global.asp

Telephone

Contact us by telephone at the numbers listed below.

	Organization	Phone I	Number
United States and Canada	Honeywell	1-800-423-9883 1-888-423-9883	Tech. Support Q&A Faxback (TACFACS)
		1-800-525-7439	Service
Asia Pacific	Honeywell Asia Pacific Hong Kong	(852) 2829-8298	
Europe	Honeywell PACE, Brussels, Belgium	[32-2] 728-2111	
Latin America	Honeywell, Sunrise, Florida U.S.A.	(854) 845-2600	

Symbol Definitions

The following table lists those symbols that may be used in this document to denote certain conditions.

Symbol	Definition
A DANGER	This DANGER symbol indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.
A WARNING	This WARNING symbol indicates a potentially hazardous situation, which, if not avoided, could result in death or serious injury .
A CAUTION	This CAUTION symbol may be present on Control Product instrumentation and literature. If present on a product, the user must consult the appropriate part of the accompanying product literature for more information.
CAUTION	This CAUTION symbol indicates a potentially hazardous situation, which, if not avoided, may result in property damage .
4	WARNING PERSONAL INJURY: Risk of electrical shock. This symbol warns the user of a potential shock hazard where HAZARDOUS LIVE voltages greater than 30 Vrms, 42.4 Vpeak, or 60 Vdc may be accessible. Failure to comply with these instructions could result in death or serious injury.
	ATTENTION, Electrostatic Discharge (ESD) hazards. Observe precautions for handling electrostatic sensitive devices
	Protective Earth (PE) terminal. Provided for connection of the protective earth (green or green/yellow) supply system conductor.
$\bar{\Box}$	Functional earth terminal. Used for non-safety purposes such as noise immunity improvement. NOTE: This connection shall be bonded to protective earth at the source of supply in accordance with national local electrical code requirements.
<u> </u>	Earth Ground. Functional earth connection. NOTE: This connection shall be bonded to Protective earth at the source of supply in accordance with national and local electrical code requirements.
\rightarrow	Chassis Ground. Identifies a connection to the chassis or frame of the equipment shall be bonded to Protective Earth at the source of supply in accordance with national and local electrical code requirements.
<u> </u>	Earth Ground. Functional earth connection. NOTE: This connection shall be bonded to Protective earth at the source of supply in accordance with national and local electrical code requirements.
\rightarrow	Chassis Ground. Identifies a connection to the chassis or frame of the equipment shall be bonded to Protective Earth at the source of supply in accordance with national and local electrical code requirements.

Contents

Introduction1
Overview1
Function Block Groups2
Function Blocks
Introduction5
ABS Function Block9
ADD Function Block
4ADD Function Block
AI Function Block
ALM Function Block
AMB Function Block
2AND Function Block
4AND Function Block
8AND Function Block
AO Function Block
ASYS Function Block
BCD Function Block
BOOL Function Block41
CARB Function Block
CAVG Function Block61
CMPR Function Block64
DC Function Block65
DCMP Function Block
DENC Function Block73
DEWP Function Block75
DI Function Block
8DI Function Block
DIV Function Block
DO Function Block
8DO Function Block
DSW Function Block
FGEN Function Block90

FI Function Block	.94
FSS Function Block	.97
FSYS Function Block 1	100
HLLM Function Block 1	101
HMON Function Block1	103
HOA Function Block 1	105
HSEL Function Block 1	110
LDLG Function Block 1	112
LMON Function Block 1	115
LPSW Function Block 1	117
LSEL Function Block 1	119
LTCH Function Block 1	120
MATH Function Block 1	122
MBR Function Block1	126
MBS Function Block 1	130
MBW Function Block 1	137
MDSW Function Block 1	41
MDFL Function Block 1	143
MMA Function Block 1	145
MSF Function Block 1	149
MUL Function Block 1	152
4MUL Function Block 1	154
NEG Function Block 1	56
NOT Function Block 1	157
ONDT Function Block 1	158
OFDT Function Block 1	60
ON/OFF Function Block 1	162
2OR Function Block 1	172
4OR Function Block 1	174
8OR Function Block 1	176
PB Function Block1	179
PI Function Block 1	182
PID Function Block1	185
PT Function Block	205
RCON Function Block	208
RCP Function Block	210
RH Function Block	212

ROC Function Block
RSW Function Block
RTMR Function Block
SCB Function Block
SPEV Function Block
SPP Function Block
SPS Function Block
SPSA Function Block
SQRT Function Block
STFL Function Block
STSW Function Block
SUB Function Block
4SUB Function Block
SW Function Block
SYNC Function Block
TAHD Function Block
TGFF Function Block256
TOT Function Block258
TPO Function Block
TPSC (3POS) Function Block
TRIG Function Block
UPDN Function Block
VLIM Function Block
WCON Function Block
WCON Function Block
WTUN Function Block

Table 1 Function block by category	2
Table 2 Analog input configuration parameters	
Table 3 Input Types and Ranges	
Table 4 Analog alarm configuration parameters	
Table 5 General tab configuration parameters	25
Table 6 Range/limit tab configuration parameters	
Table 7 Alarm tab configuration parameters	28
Table 8 Analog output configuration parameters	
Table 9 Analog system status block outputs	
Table 10 BOOL function block configuration parameters.	
Table 11 General tab configuration parameters	
Table 12 RSP tab configuration parameters	
Table 13 Range/limit tab configuration parameters	
Table 14 Tuning tab configuration parameters	
Table 15 Accutune tab configuration parameters	
Table 16 Alarms tab configuration parameters	
Table 17 Carbon potential tab configuration parameters	
Table 18 Continuous average configuration parameters	
Table 19 Monitored Events and Device States	
Table 20 Device Control function block parameters	
Table 21 DCMP configuration parameters	
Table 21 Depoint function block parameters	
Table 23 Digital input configuration parameters	
Table 24 Eight Digital input configuration parameters.	
Table 25 Digital output configuration parameters	
Table 26 Eight Digital output configuration parameters	
Table 20 Eight Digital output configuration parameters Table 27 Function generator configuration parameters	
Table 28 Frequency Input function block parameters	
Table 29 Four selector switch configuration parameters for operator interface display	
Table 30 Fast logic system status block outputs	
Table 30 Fast togic system status block outputs Table 31 High low limit configuration parameters	
Table 31 High low limit configuration parameters Table 32 High monitor function block configuration parameters	
Table 32 High monitor function block configuration parameters Table 33 HOA General Tab parameters	
Table 34 HOA Feedback Signal Tab parameters	
Table 35 Lead tag configuration parameters	
Table 30 Low moment function block configuration parameters Table 37 Math function block configuration parameters	
Table 37 Main function block configuration parameters Table 38 MBR function block configuration parameters	
Table 38 MBK function block configuration parameters Table 39 MBS Block General tab configuration parameters	
0 1	
Table 40 MBS Block Read tab configuration parameters	
Table 41 MBS block while tab configuration parameters Table 42 MBW function block configuration parameters	
Table 42 MB w function block configuration parameters Table 43 Min/Max/Ave/Sum function block configuration parameters	
Table 43 Min/Max/Ave/Sum function block configuration parameters Table 44 Mass flow function block configuration parameters	
Table 45 On delay timer function block example	
Table 46 Off delay timer configuration parameters Table 47 General to configuration perspectors	
Table 47 General tab configuration parameters Table 48 BSD tab configuration parameters	
Table 48 RSP tab configuration parameters Table 49 Range/limit tab configuration parameters	
Table 50 Alarm tab configuration parameters Table 51 Duchbutton function group configuration	
Table 51 Pushbutton function group configuration Table 52 Push Least function like language for the second seco	
Table 52 Pulse Input function block parameters Table 52 Consultate configuration constraints	
Table 53 General tab configuration parameters	.189

Tables

Table 54	RSP tab configuration parameters	191
Table 55	Range/limit tab configuration parameters	193
Table 56	Tuning tab configuration parameters	195
Table 57	Accutune tab configuration parameters	196
Table 58	Alarms tab configuration parameters	198
Table 59	PT function block configuration parameters	206
	Read constant configuration data	
Table 61	Metric units	213
Table 62	ROC configuration parameters	215
Table 63	RTMR configuration parameters	220
Table 64	SCB configuration parameters	223
Table 65	SPP inputs and current state	230
Table 66	Restart scenario options	230
Table 67	SPP configuration parameters	231
Table 68	SPS configuration parameters	239
Table 69	SQRT configuration parameters	244
Table 70	TOT configuration parameters	259
Table 71	TPO configuration parameters	262
Table 72	General tab configuration parameters	265
Table 73	RSP tab configuration parameters	267
Table 74	Range/limit tab configuration parameters	269
Table 75	Tuning tab configuration parameters	271
Table 76	Accutune tab configuration parameters	272
Table 77	Alarms tab configuration parameters	274
Table 78	Motor tab configuration parameters	276
Table 79	Up/down configuration parameters	280
	VLIM Configuration Parameters	
Table 81	Write configuration data	284
	XFR switch configuration data	

Figure 1	ABS function block example	10
	ADD function block example	
Figure 3	4ADD function block example	13
Figure 4	AI function block example	19
Figure 5	ALM function block example	23
Figure 6	AMB function block example	29
Figure 7	2AND function block example	31
	4AND function block example	
	8AND function block example	
	AO function block example	
	BCD function block example	
	BOOL function block example	
U	CARB function block examples	
	CAVG function block example	
	CMPR function block example	
	DC function block example	
	DCMP function block example	
	DENC function block example.	
Figure 19	DEWP function block example	77
	Digital input function block example	
	8Point DI function block example	
	DIV function block example	
	DO function block example	
	8 Point DO function block example	
0	1	
	DSW function block example.	
	FGEN function block example	
	FI function block example	
	FSS function block example	
	HLLM function block example	
	HMON function block example	
	HOA Function Block Example	
	HSEL Function Block Example	
	LDLG function block example1	
	LMON function block example1	
	LPSW function block example1	
	LSEL function block example1	
U	LTCH function block example1	
	MATH function block example1	
	MBR function block example1	
Figure 40	MBS function block example	36
Figure 41	MBW function block example1	40
Figure 42	MDSW function block example1	42
Figure 43	MDFL function block example1	44
Figure 44	MMA function block example1	48
Figure 45	MSF function block example	51
	MUL function block example	
	4MUL function block example	
	NEG function block example	
	NOT function block example	
0	ONDT function block example	
0	OFDT function block example	
	ON/OFF function block example	
	2OR function block example 1	
0	1	-

Figures

Figure 54	4OR function block example	
	80R function block example	
Figure 56	PB function block example	181
	PI function block example	
	PID function block example	
Figure 59	Duplex control example	200
	Cascade control example	
	Ratio control example	
	Cascade control of a boiler drum level - basic	
	Cascade control of a boiler drum level - 3 element feedwater control	
	PT function block example	
	RCON function block example	
	RCP function block example	
	RH function block example	
	ROC function block responses	
	ROC function block responses	
	RSW function block example	
Figure 71	Timing diagram for resettable timer	
	SCB function block examples	
	SPEV function block example	
	PID with setpoint programmer and guaranteed soak	
Figure 74	PID with setpoint programmer and event outputs	
Figure 75	Alternate methods for actuating SP programmer START/HOLD/RESET functions	
	Using the setpoint programmer AUX output	
	Controlled restart after power loss	
	Setpoint scheduler function block suite	
	SQRT function block example	
	SUB function block example	
	4SUB function block example	
	SW function block example	
	SYNC function block example TAHD function block example	
	TGFF function block example	
	TOT function block examples	
	TPO function block example	
	TPSC function block example	
	TRIG function block example	
	UPDN function block example	
	VLIM function block example	
	WCON function block example	
	WTUN function block example	
	WVAR function block examples	
	XFR function block example	
Figure 97	XOR function block example	291

Introduction

Overview

Purpose of this section

This Reference Guide presents detailed reference data for each function block. The reference data is organized in **alphabetical** order by the Function Block type identification label.

There is a list of Function Blocks grouped in categories as they appear on the Control Builder.

The presented data covers each control block's:

- function,
- inputs/outputs,
- point name,
- configuration parameters
- index numbers (used for reading [RCON] and writing [WCON] block parameter constants)

ATTENTION

Select the index number of the required parameter from the specific function block reference data and enter it in the appropriate field in the "Read Constant Properties" (RCON) or "Write Constant Properties" (WCON) dialog box.

- technical reference
- examples

Of course, data varies based on what is pertinent for each function block since they do not all have a point name or configuration parameters and do not all require technical reference information.

Reader assumptions

It is assumed that you are familiar with the operation of the UMC800 Control Builder, and that you have read the following manual.

• UMC800 Control Builder User's Guide (51-52-25-63)

Function Block Groups

Introduction

Table 1 lists the Function Blocks by category.

Table 1	Function	block	by	category
---------	----------	-------	----	----------

Category	Block Type	Reference Page
Loop Blocks	Analog Input (AI) Analog Out (AO) Time Prop Out (TPO) PID (PID) On-Off (ONOF) Carbon Potential (CARB) Loop Switch (LPSW) Mode Switch (MDSW) Mode Flags (MDFL) 3 Position Step (TPSC) Write Tuning Constants (WTUN) Auto Manual Bias (AMB)	14 36 261 185 162 44 117 141 143 263 285 24
SP Program	Programmer (SPP) Recipe Selector (RCP) Event Decoder (SPEV) Synchronizer (SYNC)	227 210 224 252
Setpoint Scheduler	Setpoint Scheduler (SPS) State Switch (STSW) State Flag (STFL) Setpoint Scheduler Aux (SPSA) Event Decoder (SPEV)	237 246 245 241 224
Logic	Discrete Input (DI) 8 Discrete Inputs (8DI) Discrete Output (DO) 8 Discrete Outputs (8DO) Pushbutton (PB) Frequency Input (FI) Pulse Input (PI) 2 Input AND (2AND) 4 Input AND (4AND) 8 Input AND (8AND) 2 Input OR (2OR) 4 Input OR (4OR) 8 Input OR (8OR) Exclusive OR (XOR) NOT (NOT) Digital Switch (DSW) Trigger (TRIG) Latch (LTCH) Toggle Flip-Flop (TGFF) Free-Form Logic (BOOL) Pushbutton (PB) Four Selector Switch (FSS)	78 80 84 86 179 94 182 30 32 34 172 174 176 291 157 89 277 120 256 41 179 97

Category	Block Type	Reference Page
Fast Logic	Discrete Input (DI) 8 Discrete Inputs (8DI) Discrete Output (DO) 8 Discrete Outputs (8DO) 2 Input AND (2AND) 4 Input AND (4AND) 8 Input AND (8AND) 2 Input OR (2OR) 4 Input OR (4OR) 8 Input OR (4OR) 8 Input OR (8OR) Exclusive OR (XOR) NOT (NOT) Digital Switch (DSW) Trigger (TRIG) Latch (LTCH) Toggle Flip-Flop (TGFF) System Monitor (FSYS)	78 80 84 86 30 32 34 172 174 176 291 157 89 277 120 256 100
Counters/Timers	Resettable Timer (RTMR) Periodic Timer (PT) Up Down Counter (UPDN) Off Delay Timer (OFDT) On Delay Timer (ONDT)	219 205 279 160 158
Math	Scale and Bias (SCB) Addition (ADD) Subtract (SUB) Multiply (MUL) Divide (DIV) 4 Input ADD (4ADD) 4 Input SUB (4SUB) 4 Input MUL (4MUL) Free Form Math (MATH)	222 11 247 152 83 12 248 154 122
Calculations	Compare (CMPR) Deviation Compare (DCMP) Absolute Value (ABS) Square Root (SQRT) Mass Flow (MSF) Max-Min-Ave-Sum (MMA) Negate (NEG) Relative Humidity (RH) Dewpoint (DEWP) Totalize (TOT) Continuous Average (CAVG)	64 70 9 243 149 145 156 212 75 258 61
Alarm Monitor	High Monitor (HMON) Low Monitor (LMON) System Monitor (ASYS) Analog Alarm (ALM)	103 115 38 20
Signal Selector	High Selector (HSEL) Low Selector (LSEL) Analog Switch (SW) Rotary Switch (RSW) Bumpless Transfer (XFR)	110 119 250 217 289

Category	Block Type	Reference Page
Auxiliary	Function Generator (FGEN)	90
	Lead Lag (LDLG)	112
	High-Low Limiter (HLLM)	101
	Velocity Limiter (VLIM)	281
	Rate of Change (ROC)	214
	Read Constant (RCON)	208
	Write Constant (WCON)	283
	Write Variable (WVAR)	287
	Track and Hold (TAHD)	254
	BCD Translator (BCD)	39
	Digital Encoder (DENC)	73
	Hand/Off/Auto (HOA)	105
	Device Control (DC)	65
Communications	Modbus Read (MBR)	126
	Modbus Slave (MBS)	130
	Modbus Write (MBW)	137

Function Blocks

Introduction

While you can determine the function of many blocks just from their labels and Input/output abbreviations, the purpose of others may be a complete mystery. This section is designed to familiarize you with function blocks in general and provide detailed reference data for each block.

In this section

A listing of each function block type and respective reference page follows.

	Function Block Type Identification Label	See Page
ABS	(Absolute Value)	9
ADD	(Addition 2 Inputs)	11
4ADD	(Addition 4 Inputs)	12
AI	(Analog Input)	14
ALM	(Analog Alarm)	20
AMB	(Auto/Manual Bias)	24
2AND	(AND - 2 Inputs)	30
4AND	(AND - 4 Inputs)	32
8AND	(AND - 8 Inputs)	34
AO	(Analog Output)	36
ASYS	(Alarm System Monitor) 38	
BCD	(Binary Coded Decimal Translator) 39	
BOOL	(Free Form Logic) 41	
CARB	(Carbon Potential) 44	
CAVG	G (Continuous Average) 61	
CMPR	(Comparison)	64
DC	(Device Control)	65
DCMP	(Deviation Compare)	70
DENC	(Digital Encoder)	73
DEWP	(Dewpoint)	75
DI	(Digital Input)	78
8DI	(Eight Digital Inputs)	80
DIV	(Division)	83
DO	(Digital Output)	84

	Function Block Type Identification Label	See Page
8DO	(8 Digital Outputs)	86
DSW	(Digital Switch)	89
FGEN	(Function Generator)	90
FI	(Frequency Input)	94
FSS	(Four-Selector Switch)	97
FSYS	(System Monitor-Fast Logic)	100
HLLM	(High-Low Limiter)	101
HMON	(High Monitor)	103
HOA	(Hand/Off/Auto)	105
HSEL	(High Selector)	110
LDLG	(Lead Lag)	112
LMON	(Low Monitor)	115
LPSW	(Loop Switch)	117
LSEL	(Low Selector)	119
LTCH	(Latch)	120
MATH	(Free Form Math)	122
MBR	(Modbus Read) 126	
MBS	(Modbus Slave) 130	
MBW	(Modbus Write) 137	
MDSW	(Mode Switch) 141	
MDFL	(Mode Flag)	143
ММА	(Min-Max-Average-Sum)	145
MSF	(Mass Flow)	149
MUL	(Multiplication - 2 Inputs)	152
4MUL	(Multiplication - 4 Inputs)	154
NEG	(Negate)	156
NOT	(Not Boolean Logic)	157
ONDT	(On Delay Timer)	158
OFDT	(Off Delay Timer)	160
ON/OFF	(On/Off Control)	162
2OR	(OR - 2 Inputs)	172
40R	(OR - 4 Inputs)	174

	Function Block Type Identification Label	See Page
80R	(OR - 8 Inputs)	176
РВ	(Pushbutton)	179
PI	(Pulse Input)	182
PID	(Proportional, Integral, Derivative)	185
РТ	(Periodic Timer)	205
RCON	(Read Configuration Parameter Data)	208
RCP	(Recipe Selector)	210
RH	(Relative Humidity)	212
ROC	(Rate of Change)	214
RSW	(Rotary Switch)	217
RTMR	(Resettable Timer)	219
SCB	(Scale and Bias)	222
SPEV	(Setpoint Programmer Event Decoder)	224
SPP	(Setpoint Programmer)	227
SPS	(Setpoint Scheduler)	237
SPSA	(Setpoint Scheduler Auxiliary)	241
SQRT	(Square Root)	243
STFL	(Setpoint Scheduler State Flags)	245
STSW	(Setpoint Scheduler Switch)	246
SUB	(Subtraction - 2 Inputs)	247
4SUB	(Subtraction - 4 Inputs)	248
SW	(Analog Switch)	250
SYNC	(Synchronize)	252
TAHD	(Track and Hold)	254
TGFF	(Toggle Flip Flop)	256
тот	(Totalizer)	258
TPO	(Time Proportional Output)	261
TPSC	(Three Position Step Control)	263
TRIG	(Trigger)	277
UPDN	(UP/Down Counter)	279
VLIM	(Velocity (rate) Limiter)	281
WCON	(Write Constant)	283

	Function Block Type Identification Label	See Page
WTUN	(Write Tuning Constants)	285
WVAR	(Write Variables)	287
XFR	(Transfer Switch)	289
XOR	(Exclusive OR)	291

ABS Function Block

Description

The **ABS** label stands for **Absolute Value**. This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Calculate the absolute value of a single analog variable input.

• OUT = [X]

Input

 $\mathbf{X} =$ Analog value to be modified.

Output

OUT = modified value.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

ABS example

Figure 1 shows a Function Block Diagram configuration using an ABS function block to calculate the absolute value of the deviation between two analog inputs.

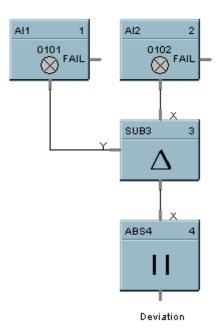
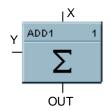



Figure 1 ABS function block example

ADD Function Block

Description

The **ADD** label stands for **Addition Mathematical Operation** (2 **Inputs**). This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Add two inputs (X,Y) to get an output.

• $\mathbf{OUT} = \mathbf{X} + \mathbf{Y}$

Input

 $\mathbf{X} =$ First Analog Input $\mathbf{Y} =$ Second Analog Input

Output

OUT = Sum of analog values

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

ADD example

Figure 2 shows a Function Block Diagram using an ADD function block to find the total flow rate as the sum of Flow 1 and Flow 2.

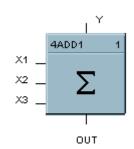


Figure 2 ADD function block example

4ADD Function Block

Description

The **4ADD** label stands for **Addition Mathematical Operation** (**4 Inputs**). This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Add FOUR inputs (X1, X2, X3,Y) to get an output.

• **OUT** =
$$X1 + X2 + X3 + Y$$

Input

X1 = First Analog Input X2 = Second Analog Input X3 = Third Analog Input Y = Fourth Analog Input

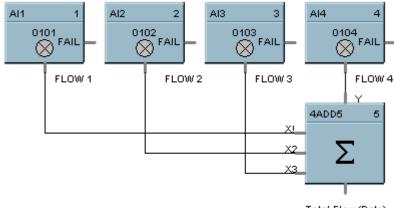
ATTENTION

All four inputs must be connected or unused inputs inverted. Unconnected inputs default to zero.

Output

OUT = Sum of the analog values

Block properties


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

4ADD example

Figure 3 shows a Function Block diagram using a 4ADD function block to find the total Flow rate as the sum of Flow 1, Flow, 2, Flow 3, and Flow 4.

Total Flow (Rate)

Figure 3 4ADD function block example

AI Function Block

Description

The **AI** label stands for **Analog Input**. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

:

Read value of an Analog Input from a specified real I/O address. Convert analog input value to corresponding output (OUT) in engineering units based on the necessary scaling and conversions performed.

LINEAR - Converts analog input value to corresponding output in units based on a linear 0 % to 100 % scale and specified high and low range values.

OUT = Scale x Input value + Bias *where*

```
Scale = \frac{\text{High range value - Low range value}}{100}
```

Input value = Analog Value in percent

T/C or RTD - Converts analog input value in engineering units using the range of Input Type.

ATTENTION

The failsafe detection on this input block configured for 4-20mA range is:

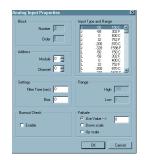
Low Detection: -3.2mA High Detection: 21.6mA

Outside of the range the flag (Input Fail) is ON. There is no detection from 0 to 4 mA, but the block continues to work and provide data which could be compared via an Alarm Block.

Input

Analog value from specified real I/O address.

Output


OUT =

Analog Input value in engineering units.

FAIL =

Digital status of channel Digital Low (0) = OK Digital High (1) = Open sensor or failed input channel.

Configuration parameters

This is a view of the AI Properties Dialog box.

You must configure the AI function block parameters to the desired values or selections that match your operating requirements.

Table 2 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order for Block	Read Only. See "Configure" Menu, "Execution Order" to change.
Address	I/O Module		Address of selected I/O module (must match model selection guide)	Enter a value: from 1 to 6
	Channel		Channel on selected I/O Module	Enter a value: from 1 to 4
Input Type and Range	Input Type and Range	N/A	Thermocouple Input types RTD Input types Linear Input types	Select from list box. See Table 3 for Input Type and Range
Range	High Range Value	N/A	For Linear Inputs Only - output value that corresponds to 100 % input value For example: Actuation Input = 4-20mA Process variable = Flow Range of Flow = 0 to 250 gal/min High Range Display Value = 250 Low range Display Value = 0 Then 20mA = 250, 4mA = 0	Enter a value: ± 99999 to ± 99999
	Low Range Value	N/A	For Linear Inputs Only - output value that corresponds to 0 % input value For example: See "High Range Value"	Enter a value: ± 99999 to ± 99999

Table 2 Analog input configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Settings	Filter Time (sec)	N/A	A software digital filter is provided for the input designated to smooth the input. You can configure the first order lag time constant from 1 to 120 seconds. 0=no filter	Enter a value: 0 to 120 seconds
	Bias	3	Bias is used to compensate the input for drift of an input value due to deterioration of a sensor, or some other cause.	Enter a value: ±9999 to ±99999
Failsafe	Use Value field	N/A	The output value to which the output will go to protect against the effects of failure of the equipment, such as, fuel shut-off if there is loss of flame in a furnace, or a sensor break.	Enter a value in Engineering Units ±9999 to ±99999
	Use Value	5	Use the value entered in the appropriate field.	Click on Radio button to select
	Downscale	5	LINEAR OUT = Value set at "Low range value" field. T/C or RTD OUT = Value of Low range implied by input type.	Click on Radio button to select
	Upscale		LINEAR OUT = Value set at "High range value" field. T/C or RTD OUT = Value of High range implied by input type.	Click on Radio button to select
Burnout Check	Burnout Check -	5	Burnout check enable (Thermocouples only)	Click on block to select or deselect

Failsafe rules

If the controller is unable to access the physical channel or the sensor is faulty, and:

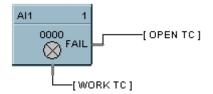
- If Failsafe is "Use Value"
- If Failsafe is enabled and downscale
- If Failsafe is enabled and upscale

OUT = Configured Failsafe value OUT = Range Lo (linear) Low Range Value of input type (T/C and RTD) OUT = Range Hi (linear) High Range Value of input type (T/C and RTD)

Table 3	Input	Types	and	Ranges
---------	-------	-------	-----	--------

Input Type	Range				
Thermocouple Input Types					
J	–50 to 150 °C				
J	–58 to 302 °F				
J	0 to 400 °C				
J	32 to 752 °F				
J	–200 to 870 °C				
J	–328 to 1598 °F				
L	–50 to 150 °C				
L	–58 to 302 °F				
L	0 to 400 °C				
L	32 to 752 °F				
L	–200 to 870 °C				
L	–328 to 1598 °F				
К	0 to 400 °C				
К	32 to 752 °F				
К	0 to 800 °C				
К	32 to 1472 °F				
К	0 to 1200 °C				
К	32 to 2192 °F				
К	–200 to 1370 °C				
К	–328 to 2498 °F				
Ν	0 to 400 °C				
Ν	32 to 752 °F				
Ν	0 to 800 °C				
Ν	32 to 1472 °F				
Ν	0 to 1200 °C				
N	32 to 2192 °F				
Ν	–200 to 1300 °C				
Ν	-328 to 2372 °F				
R	–20 to 1760 °C				
R	–4 to 3200 °F				
S	0 to 1600 °C				
S	32 to 2912 ºF				

Input Type	Range
Thermocoup	ble Input Types (cont.)
S	–20 to 1760 ⁰C
S	–4 to 3200 °F
Т	–50 to 150 °C
Т	–58 to 302 °C
Т	0 to 150 ℃
Т	32 to 302 °F
Т	50 to 150 °C
Т	122 to 302 °F
Т	−200 to 400 °C
Т	–328 to 752 °F
Т	–90 to 240 °C
Т	–130 to 464 °F
U	–50 to 150 °C
U	–58 to 302 °F
U	0 to 150 °C
U	32 to 302 °F
U	50 to 150 °C
U	122 to 302 ºF
U	–200 to 400 °C
U	–328 to 752 °F
NiMo	0 to 1400 °C
NiMo	32 to 2552 °F
W_W26	–20 to 2320 °C
W_W26	–4 to 4208 °F
W5W26	–20 to 2320 °C
W5W26	–4 to 4208 °F
PR20-40	0 to 1800 °C
PR20-40	32 to 3272 °F
В	40 to 1820 °C
В	104 to 3308 °F
MoCo*	0 to 1400 °C
MoCo*	32 to 2552 °F
PLTNL	−70 to 750 °C
PLTNL	–94 to 1382 °F
PLTNL	0 to 1380 °C
PLTNL	32 to 2516 °F


*Nickel/Nickel Moly, 1990 temp. Standard

Input Type	•	
RTD Input	Гуреѕ	
Pt100	–50 to 150 °C	
Pt100	–58 to 302 °F	
Pt100	0 to 100 °C	
Pt100	32 to 212 ºF	
Pt100	0 to 200 °C	
Pt100	32 to 392 ºF	
Pt100	0 to 400 °C	
Pt100	32 to 752 ºF	
Pt100	–200 to 800 °C	
Pt100	–328 to 1472 °F	
Pt100	–90 to 240 °C	
Pt100	–130 to 464 °F	
JIS	–50 to 150 °C	
JIS	–58 to 302 °F	
JIS	0 to 100 °C	
JIS	32 to 212 ºF	
JIS	0 to 200 °C	
JIS	32 to 392 ºF	
JIS	0 to 400 °C	
JIS	32 to 752 °F	
JIS	–200 to 500 °C	
JIS	–328 to 932 °F	
Ni50	–80 to 320 °C	
Ni50	–112 to 608 °F	
Ni508	–80 to 150 °C	
Ni508	–112 to 302 °F	
Cu10	–20 to 250 °C	
Cu10	–4 to 482 °F	
Ohms	0 to 200	
Ohms	0 to 2000	

Input Type	Range
Linear Input	Types
mV	0 to 10
mV	-10 to 10
mV	0 to 20
mV	-20 to 20
mV	0 to 50
mV	-50 to 50
mV	10 to 50
mV	0 to 100
mV	-100 to 100
mV	0 to 500
mV	-500 to 500
mA	0 to 20
mA	4 to 20
V	0 to 1
V	-1 to 1
V	0 to 2
V	-2 to 2
V	0 to 5
V	–5 to 5
V	1 to 5
V	0 to 10
V	-10 to 10

Example

Figure 4 shows a Function Block Diagram configuration using an AI function block.

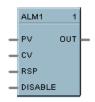

AI used for work temperature monitoring. Tag descriptors are used to identify the input. A digital tag connected to the fail output can alarm on an open sensor.

Figure 4 Al function block example

ALM Function Block

Description

The **ALM** label stands for the **Analog Alarm function.** This block is part of the *Alarms/Monitor* category. It looks like this graphically on the Control Builder.

Function

The analog alarm block accepts an analog signal as a process variable and compares it to a limit value (setpoint) to determine an alarm condition. The setpoint may be entered by the user or be another analog signal in the controller.

Alarm actions may be high, low or high deviation, low deviation or band deviation. For deviation alarming, a second analog signal provides the reference and setpoints represent deviation from the reference.

The alarm output may be inverted to create normally active digital output. A user selection for latching until acknowledged or automatically reset is provided.

A user-specified hysteresis value in the engineering units of the process variable is provided.

An on-delay time value up to 240 seconds is available to prevent momentary alarm actions. A digital reset input is available to disable alarm actions.

Alarm type function

(PV>SP)	High Process Variable/Local Setpoint
• $OUT = ON$	If the PV is greater than the local Setpoint
• OUT = OFF	If the PV is less than the Local Setpoint minus Hysteresis
(PV>CV)	High Process Variable/Compare Value
• $OUT = ON$	If the PV is greater than the Compare Value (CV) i.e. Alarm Setpoint
• OUT = OFF	If the PV is less than the Compare Value minus Hysteresis
(PV <sp)< td=""><td>Low Process Variable/Local Setpoint</td></sp)<>	Low Process Variable/Local Setpoint
(PV<sp< b="">) • OUT = ON</sp<>	Low Process Variable/Local Setpoint If the PV is less than the Local Setpoint
	•
• OUT = ON	If the PV is less than the Local Setpoint
 OUT = ON OUT = OFF	If the PV is less than the Local Setpoint If the PV is greater than the Local Setpoint + Hysteresis

[(PV-CV)>SP] High Deviation Alarm

- OUT = ON If the PV input minus the CV input is greater than the Local Setpoint
- OUT = OFF If the PV input minus the CV input is less than the Local Setpoint minus Hysteresis

[(CV-PV)>SP] Low Deviation Alarm

- OUT = ON If the CV input minus the PV input is greater than the local Setpoint
- OUT = OFF If the CV input minus the PV input is less than the Local Setpoint minus Hysteresis

PV-CV SP Band Deviation Alarm

- OUT = ON If the absolute value of (PV–CV) is greater than the Local Setpoint
- OUT = OFF If the absolute value of (PV–CV) is less than the Local Setpoint minus Hysteresis

Inputs

PV = Process Variable **CV** = Compare Value **RSP** = Remote Setpoint **DISABLE** = On disables alarm action.

Output

OUT = Output

Block properties

A	nalog Alarm		x
Γ	Block		
	Number	4	Order 4
	Alarm Setpoint		
	Туре:	PV > SP	•
	Hysteresis:	0	
	Local Setpoint	0	Use RSP Input
	- Output		
	On Delay (sec):	0	Latch
		OK	Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

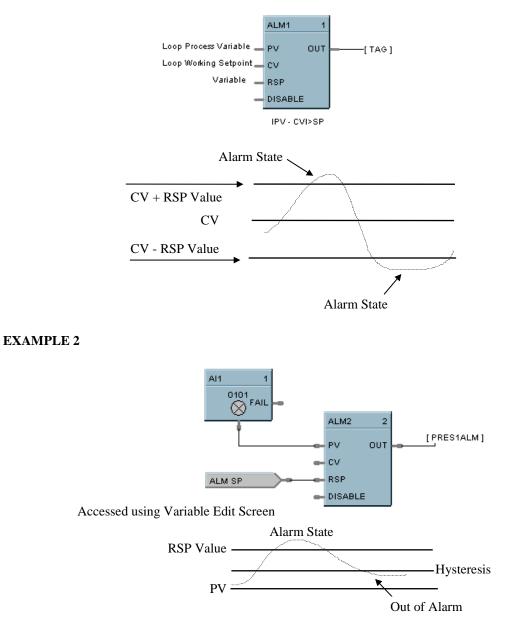
You must configure the ALM function block parameters to the desired value or selection that matches your operating requirements.

Table 4 describes the parameters and the value or selection.

ATTENTION

Local Setpoint is set in the Control Builder unless "Use RSP Input" is enabled. Use an Analog Variable connected to one RSP input (use RSP Input Enabled) if you want to change alarm setpoint at the operator interface via the Variable Edit Display.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order for Block	Read Only. See "Configure" Menu, "Execution Order" to change.
Alarm Setpoint	Туре	N/A	Alarm Action Type	PV>SP = High Process Variable/Local Setpoint PV>CV = High Process Variable /Compare Value PV <sp =="" low="" process<br="">Variable/Local Setpoint PV<cv =="" low="" process<br="">Variable /Compare Value (PV-CV)>SP = High Deviation Alarm (CV-PV)>SP = Low Deviation Alarm IPV-CVI>SP = Band Absolute Deviation Alarm</cv></sp>
	Hysteresis	4	Hysteresis in engineering units can be set from 0 to the input span monitored variable.	0 to 99999.9 in Engineering Units
	Local Setpoint	0	Local Setpoint value in engineering units or a calculation from another function block via RSP (see "Use RSP Input").	0 to 99999.9 in Engineering Units
	🔲 Use RSP Input	1	Remote Setpoint selection	Click on box to use Remote Setpoint (RSP)
Output	Latch	3	ON latches the alarm output until acknowledged. To acknowledge an alarm, it must be tagged and entered into an alarm group. This will provide for the acknowledgment from the operator interface.	Click on Box to select
	On Delay	6	Number of seconds the alarm is active before activating OUT.	0 to 240 seconds

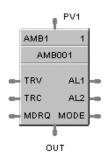

Table 4 Analog alarm configuration parameters

Example

Figure 5/Example 1 shows an ALM function block being used for Band Deviation Alarm—a control loop process variable is compared to the loops working setpoint. A variable is used as the setpoint value to allow periodic changes. (RSP enabled). The Output contains a tag identification that will be used to identify the alarm state.

Example 2 shows an ALM function block being used to alarm on PV>SP.

EXAMPLE 1



AMB Function Block

Description

The AMB label stands for Auto/Manual Bias Function. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

On transfer from Manual to Auto; Bias is calculated to make PV + Bias = Output.

Inputs

PV1	=	Process Variable Input (%)
TRV	=	Output Track Value in percentage (Output = TRV Value when TRC is ON).
TRC	=	Output Track Command—1 = enable TRV (Mode = Local Override), 0 = disable
MDRQI	. =	External Mode Request (connected to the MDRQO output of a MDSW function block)
		encoded as follows:
		0.0 = No Change
		1.0 = Manual Mode Request
		2.0 = Automatic Mode Request

Outputs

OUT = Control Output (-5 % to 105 %) AL1 = Alarm 1 AL2 = Alarm 2 MODE = Actual Mode encoded as follows: (Connect to Mode Flags block [MDFL] to encode mode status.) 4.0 LSP AUTO 5.0 LSP MAN 7.0 LSP LO (Local Override)

Block properties

Double click on the function block to access the function block properties dialog box.

Configuration parameters

The Auto/Manual Bias properties dialog box is divided into three tab cards

GENERAL RANGE/LIMIT ALARMS

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 5 describes the parameters and the value or selection.

AMB Function Block Properties	×
General Range / Limit Alarms	
- Block	
Tag Name	AMB001
Descriptor	
Start / Restart	
Initial mode	Man LSP only
Power up mode	Man LSP 💌
Power up out	Failsafe 💌
Failsafe out	0
	OK Cancel

Table 5 General tab configuration parameters

Properties Function	Parameter	Index #	Parameter Description	Value	or Selection
Block	Tag Name	N/A	8-character tag name		
	Descriptor	N/A	Block description		
Start/Restart	Initial Mode	N/A	Mode at NEWSTART	MAN Manua	I
			Newstart is the first scan cycle following the cold start of the controller	AUTO Auton	natic
	Power up	N/A	Mode at power up	MAN	Manual
	Mode		PREVIOUS	Same mode (auto or manual)	
	Power Up Out	N/A	Output at Power up	FAILSAFE	Failsafe output value.
				LAST OUT	Same as at power down.
	Failsafe Out	7	Failsafe Output Value	–5 to 105 (de	efault 0)

RANGE/LIMIT tab

It looks like this graphically on the Control Builder. Table 6 describes the parameters and the value or selection.

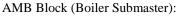
AMB Function Block Prope	erties	X
General Range / Limit Ala	arms	
Ranging PV high range PV low range Display Decimal places Units Dev bar range (EU)	Limiting	Out high limit 105 Out low limit 5
		OK Cancel

Table 6 Range/limit tab configuration parameters

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Ranging	PV High Range	0	PV High Range Value	-5 % to 105 %
	PV Low Range	1	PV Low Range Value	-5 % to 105 %
Display	Decimal Places	N/A	Number of digits to display after decimal point.	0 to 5
	Units	N/A	Text to display for EU	4 characters
	DEV Bar Range (EU)	N/A	Deviation Bar Range on the Operator Interface	-99999 to 99999
Limiting	Out High Limit	5	Output High Limit Value - prevents the Output from going above the value set here.	-5 % to 105 %
	Out Low Limit	6	Output Low Limit Value - prevents the Output from going below the value set here.	-5 % to 105 %

ALARMS tab


It looks like this graphically on the Control Builder. Table 7 describes the parameters and the value or selection.


AMB Function Block P	roperties	×
General Range / Limit	Alarms	
Alarm 1		
Setpoint 1	Туре	No Alarm 💌
Setpoint 2	ОТуре	No Alarm 💌
Alarm 2		
Setpoint 1	ОТуре	No Alarm 💌
Setpoint 2	ОТуре	No Alarm 💌
Hysteresis (%)	0	
		OK Cancel

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Alarm 1	Setpoint 1	8	Alarm 1 Setpoint 1 Value - this is the value at which you want the alarm type chose below to activate	-5 % to +105 % (default 0)
	Туре	N/A	Alarm 1 Setpoint 1 Type - select what you want Alarm 1 Setpoint 1 to represent.	Selections: NO ALARM AL_PV_HI AL_PV_LO AL_OUT_HI AL_OUT_LO
	Setpoint 2	9	Alarm 1 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 1 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm 2	Setpoint 1	10	Alarm 2 Setpoint 1 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 1 Type	Same as Alarm 1 Setpoint 1
	Setpoint 2	11	Alarm 2 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm Hysteresis	%	16	Alarm Hysteresis in %	0 % to 5 %

Example

Figure 6 shows an function block diagram using an AMB function block.

Operators place AMB Block to "MAN" mode to adjust fuel setpoints up or down independent of each boiler.

AMB: OUT = IN + BIAS		Bias is automatically calculated as operator increment decrement out value. Bias = $OUT - IN$	or
	AUTO MODE	Bias is a fixed value from the man mode calculation	hove

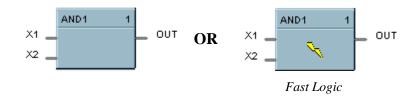

AUTO MODE Bias is a fixed value from the man mode calculation. Above OUT = IN + Bias

Figure 6 AMB function block example

2AND Function Block

Description

The **2AND** label stands for the **AND Boolean function** (**2 Inputs**). This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns digital output (OUT) ON when inputs X1 and X2 are ON. Thus,

- If *all* inputs are ON, then: **OUT = ON.**
- If *any* input is OFF, then: **OUT = OFF.**

Input

X1 = First digital signal.

 $\mathbf{X2} = \mathbf{Second} \ \mathbf{digital} \ \mathbf{signal}.$

Output

OUT = Digital signal controlled by status of input signals.

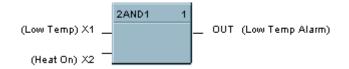
Block properties

Logic Block Properties	×
Block Number 1 Order 1	OK Cancel
Invert Input	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

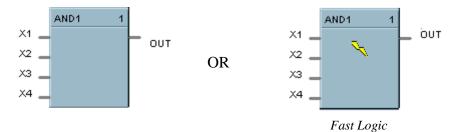
You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.


Input state

You can invert Input 1 or Input 2 or both. If the input is inverted, an input line that is ON is seen as OFF ("N" on Icon next to inverted input).

Example

Figure 7 shows an AND function block being used to monitor two input signals for an alarm condition.



4AND Function Block

Description

The **4AND** label stands for the **AND Boolean function** (**4 Inputs**). This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns digital output (OUT) ON when inputs X1 through X4 are ON. Thus,

- If all inputs are ON, then: **OUT = ON.**
- If any input is OFF, then: **OUT = OFF.**

Input

- **X1** = First digital signal
- $\mathbf{X2} = \mathbf{Second} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X3} =$ Third digital signal
- X4 = Fourth digital signal

ATTENTION

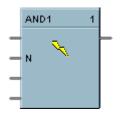
Unused values must be set to 1 or inverted.

Output

OUT = Digital signal controlled by status of input signals

Block properties

Logic Block Properties Block Number 1 Order 1	OK Cancel
Invert Input ☐ I ☐ I 3 I 4 I	

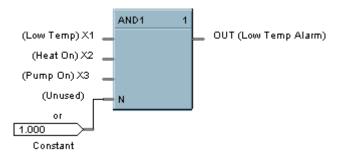

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Input state

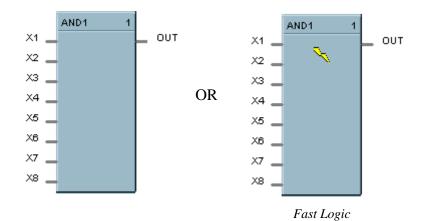
You can invert Input 1, 2, 3, 4, or all. If the input is inverted, an input line that is ON is seen as OFF ("N" on Icon next to inverted input).



ATTENTION Unused values must be set to 1 or inverted.

Example

Figure 8 shows a Function Block Diagram configuration using a 4AND function block. The function block is being used to monitor 3 input signals for an alarm condition. Note unused input is terminated.



8AND Function Block

Description

The **8AND** label stands for the **AND Boolean function** (8 **Inputs**). This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns digital output (OUT) ON when inputs X1 through X8 are ON. Thus,

- If *all* inputs are ON, then: **OUT = ON.**
- If *any* input is OFF, then: **OUT = OFF.**

Input

- X1 = First digital signal
- $\mathbf{X2} = \mathbf{Second} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X3} =$ Third digital signal
- **X4** = Fourth digital signal
- X5 = Fifth digital signal
- **X6** = Sixth digital signal
- $\mathbf{X7} = \mathbf{Seventh} \operatorname{digital} \operatorname{signal}$
- $\mathbf{X8} = \text{Eighth digital signal}$

ATTENTION

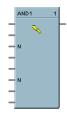
Unused values must be set to 1 or inverted.

Output

OUT = Digital signal controlled by status of input signals.

Block properties

Logic Block Properties	×
Block Number 1 Order 1	OK Cancel
Invert Input	
1 🗖	
2 🗖	
3 🔽	
4 🗖	
5 🗖	
6 🔽	
7 🗖	
8 🗖	


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Input state

You can invert Input 1, 2, 3, 4, 5, 6, 7, 8 or all. If the input is inverted, an input line that is ON is seen as OFF ("N" on diagram next to inverted input).

\mathbf{H}

ATTENTION

Unused values must be set to 1 or inverted.

Example

Figure 9 shows a Function Block Diagram configuration using a 8AND function block. The function block is used in a startup sequence to enable heaters when 6 input conditions are true.

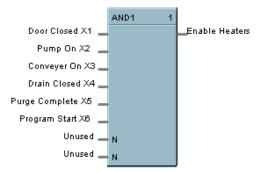


Figure 9 8AND function block example

AO Function Block

Description

The **AO** label stands for a milliamp **Analog Output**. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Range High and Range Low are used to specify the Engineering Unit values for 100 % and 0 % of this block's input span. For reverse outputs, Range High may be set to a value less than Range Low.

The output range high and range low values (0-20 maximum) set the milliamp output values that correspond to the 0 % to 100 % span limits of the inputs.

Input

 $\mathbf{X} = Analog value$

Output

Converted value sent to specified real I/O address.

Block properties

Analog Output Properties	×
- Block	Range
Number 1	Range Hi 100
Order 1	Range Lo
- Address	- Output
Module 0 💌	mA at Range Hi 20
Channel 🛛 🚊	mA at Range Lo 4
	OK Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the AO function block parameters to the desired value or selection that matches your operating requirements. Table 8 describes the parameters and the value or selection. AO's Address starts at Module 4.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order for Block	Read Only. See "Configure" Menu, "Execution Order" to change.
Address	I/O Module		Address of selected I/O module (must match model selection guide)	Enter a value: from 4 to 10
	Channel		Channel on selected I/O Module	Enter a value: from 1 to 4
Range	Range Hi	1	High Range Value Engineering Unit - value of input that corresponds to 100 % output value	-99999 to 999999 Default = 100
	Range Low	2	Low Range Value Engineering Unit - value of input that corresponds to 0 % output value	-99999 to 999999 Default = 0.0
Output	mA at range High	3	Value of mA output that corresponds to 100 % output signal (for example: 20 mA)	0 to 20 Default = 20
	mA at Low Range	4	Value of mA output that corresponds to 0 % output signal (for example: 4 mA)	0 to 20 Default = 4

Table 8 Analog output configuration parameters

Example

Figure 10 shows a Function Block Diagram configuration using an AO function block to retransmit an analog input value. In example A, the output is from a SPP block to an external controller via the AO block. In example B, the mA output is 4 mA for an analog input of 2000.

ATTENTION

Reverse scaling is required for duplex control outputs.

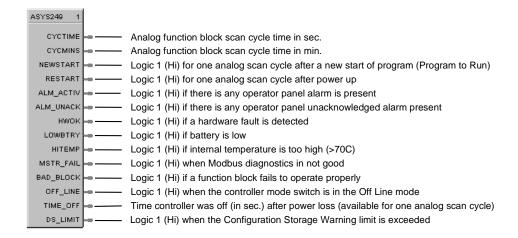


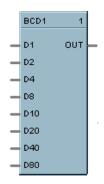
Figure 10 AO function block example

ASYS Function Block

Description

The **Analog System Status Block (ASYS)** is a function block and is part of the *Alarm/Monitor* category. It provides read access to controller status values including those related to the Analog execution cycle. The output may be connected to function block inputs. The outputs may also be connected to signal tags for operator interface monitoring. The ASYS System Monitoring block is assigned block number 249. It looks like this graphically on the Control Builder:




Table 9 describes the outputs for the Analog system status block.

Output	Description
CYCTIME	Control Block Cycle Time in seconds
CYCMINS	Control Block Cycle Time in minutes
NEWSTART	Newstart is ON for one full cycle of control block execution, following a New start of the system. For example: starting after a change from program to run.
RESTART	Restart is ON for one full cycle of control block execution, following power up.
ALM ACTIV	Alarm Active is ON if any operator panel alarm is ON.
ALMUNACK	Alarm unacknowledge is ON if any operator panel's alarm is unacknowledged.
HWOK	Hardware OK is ON if there are no faults.
LOWBTRY	Low Battery is ON if the battery is low, Off when battery is good.
HI TEMP	High CJ Temperature is ON if the CJ temperature is high.
MSTR FAIL	Communications Failure is ON when Modbus master diagnostic is not good
BAD BLOCK	Bad Block is ON when one or more blocks are not operating properly.
OFF LINE	On when Controller Mode switch is in Off Line mode.
TIME OFF	Number of seconds power was turned off. Valid for one cycle of control blocks execution following power up. Then it is cleared to zero.
DS LIMIT	ON when the configuration storage warning limit is exceeded. OFF when the storage capacity falls below the warning limit.

BCD Function Block

Description

The **BCD** label stands for **Binary Coded Decimal Translator.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Accept up to 8 digital inputs in sequence and interprets the ON/OFF status of the first 4 inputs as a BCD value between 0 and 9 and the second 4 digits as a value between 10 and 90.

Input

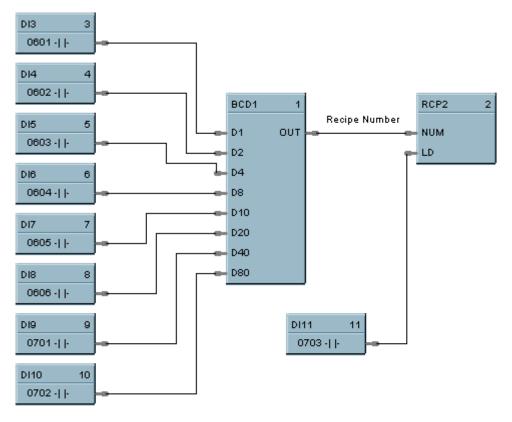
- D1 = Bit 0 of the BCD lower digit
- D2 = Bit 1 of the BCD lower digit
- $\mathbf{D4} = \text{Bit } 2 \text{ of the BCD lower digit}$
- **D8** = Bit 3 of the BCD lower digit
- D10 = Bit 0 of the BCD upper digit
- D20 = Bit 1 of the BCD upper digit
- D40 = Bit 2 of the BCD upper digit
- **D80** = Bit 3 of the BCD upper digit

Output

OUT = Analog output integer in the range of 0 to 99

OUT = (1* (1 if D1 is ON, else 0))+ (2* (1 if D2 is ON, else 0)) + (4* (1 if D4 is ON, else 0)) + (8* (1 if D8 is ON, else 0)) + (10* (1 if D10 is ON, else 0)) + (20* (1 if D20 is ON, else 0)) + (40* (1 if D40 is ON, else 0)) + (80* (1 if D40 is ON, else 0))) + (80* (1 if D80 is ON, else 0)))

Block properties


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 11 shows a Function Block Diagram configuration using a BCD function block to select a Recipe.

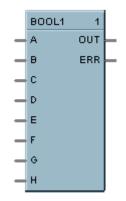

Recipes

Figure 11 BCD function block example

BOOL Function Block

Description

The **BOOL** label stands for **Free Form Logic**. This block is part of the *Logic* category. It looks like this graphically on the Control Builder.

Function

Read digital inputs A through H and calculates the output based on specified Boolean logic function.

- Offers the following Boolean logic functions:
 - AND OR NOT XOR (- Left parenthesis) - Right Parenthesis

Inputs

Output

ERR = error during execution of the equation. **Error** = **ON.** No **Error** = **OFF.**

OUT = Calculated Output (ON or OFF)

A maximum of 50 tokens per equation is allowed. A token is an operator, a variable, or a pair of parentheses.

TIP

- Use only the following list of words and characters in an equation:
 - AND logical AND,
 - OR logical OR,
 - NOT unary NOT,
 - XOR exclusive OR, or
 - "()", "[]", and "{ }" parentheses three types.
- A left parenthesis must have a matching right parenthesis.
- The matching parenthesis must be the same type, that is, "()", "[]", or "{ }".
- Parentheses may be nested to any depth.
- Logicals AND, OR, and XOR must have a left and right operand.
- Unary NOT must have one operand to the right, and the operand must be enclosed in parentheses; for example, NOT(G).

Block properties

Free Form	Logic Number 1		Order 1	×
0UT =				
Errors:				Functions:
				Operators: * (And) + (Dr) ^ (Xor)
		OK	Cancel	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the BOOL function block parameters to the desired value or selection that matches your operating requirements. Table 10 describes the parameters and the value or selection.

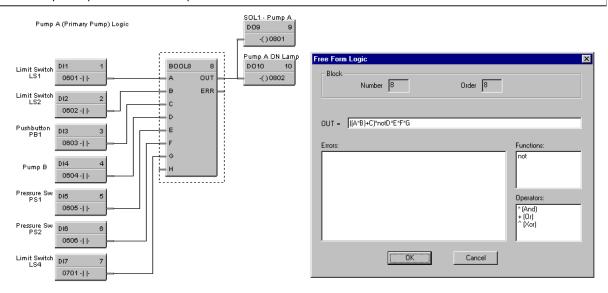
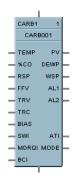

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Equations	Equation Field	N/A	Equation Field	Enter the desired equation in this field
Functions	Logic Functions	N/A	NOT	Double Click on a function to select from the list box
Operators	Logic Operations	N/A	* (AND) + (OR) ^ (XOR)	Double Click on an operation from the list box
Errors	Error list	N/A	List of equation errors	

Table 10 BOOL function block configuration parameters

Example

Free Form Logic - Boolean Expressions

Rather than using individual logic function blocks, a boolean expression may be entered directly using the Free Form Logic block which accepts up to 8 inputs. This can save function blocks. The inputs may come from other blocks with discrete outputs, DI's, or digital signal tags. The example below is a direct entry of the Example 4 boolean expression, with the output connected to two DO's. The Free Form Logic popup dialog box is also shown indicating format for expression entry. Note that Input H is unused. You may use multiple levels of parenthesis to generate the boolean expression. You can us as many blocks as required up to the limit. This implementation uses 10 function blocks.



CARB Function Block

Description

The **CARB** label stands for **Carbon Potential.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

A combined Carbon Probe and Temperature Probe and PID algorithm determine Carbon Potential of furnace atmospheres based on a Zirconia probe input.

Input

Probe = Sensor Input from AI block (0-2 mV)

TEMP = Temperature Input (°F or °C) from AI block

%CO = Percent Carbon Monoxide 1 % to 100 %

RSP = Remote Setpoint Analog Input value in Engineering Units or Percentage (0-1.5)

FFV = Feedforward value in percentage (0 % to 100 %) The Feedforward value is multiplied by the Feedforward Gain, then directly summed into the output of the PID block.

TRV = Output Track value in Percentage. Output = TRV when TRC is on. (If control output OUT is connected back to the Track Value Input [TRV], then the Track Command Input [TRC] will function as an output hold. This may be used where input probes are undergoing burnoff.)

TRC = Output Track Command [ON, OFF] On – Enables TRV (Mode = Local Override)

BIAS = Remote Bias value for Ratio PID

SWI = Switch Inputs (from LPSW function block)

0 =No Change

1 = Initiate Autotuning

2 = Change Control Action (reverse to direct acting or direct to reverse acting)

4 = Force Bumpless Transfer

- 8 = Switch to Tune Set 1
- 16 = Switch to Tune Set 2

MDRQI = External Mode request (typically connected to the MDRQO output of a MDSW function block that encodes discrete switch inputs).

- 0 =No Change
- 1 = Manual Mode Request
- 2 =Auto Mode Request
- 4 = Local Setpoint Request
- 8 = Remote Setpoint Request

BCI = Back Calculation Input Value—See ATTENTION 1.

Output

PV = Calculated Process Variable (% Carbon) for monitoring

DEWPT = Calculated Dewpoint

WSP = Working Setpoint in Engineering Units for monitoring (setpoint in use)

AL1 = Alarm 1 - Digital Signal

AL2 = Alarm 2 - Digital Signal

ATI = Autotune Indicator (ON = Autotune in Progress)

MODE = Loop mode status (typically connected to the Mode Flags block for encoding). Value indicates mode as follows:

- 0.0 RSP AUTO
- 1.0 RSP MAN
- 2.0 RSP Initialization Manual (See ATTENTION 1)
- 3.0 RSP Local Override (See ATTENTION 1)
- 4.0 LSP AUTO
- 5.0 LSP MAN
- 6.0 LSP Initialization Manual (See ATTENTION 1)
- 7.0 LSP Local Override (See ATTENTION 1)

BCO - Back Calculation Output (for blocks used as Cascade Secondary)—See ATTENTION 2.

ATTENTION

1. When a request to change from Auto to manual is received and:

- the request comes from the operator Interface, the request is ignored.
- the request comes from the Mode Switch (MDSW) function block, the request is retained and when leaving the Initialization Mode or Local Override Mode the loop will go to manual.
- 2. BCO output is provided for applications where the block is used as a cascade secondary. BCI input is provided for applications where the block is used as a cascade primary. When the BCO output of a secondary loop is connected to the BCI input of a primary loop, bumpless transfer is achieved when the secondary is switched into remote setpoint (i.e., cascade) mode. In addition, the primary loop is prevented from reset windup when the secondary is decoupled from the process. The secondary is decoupled from the process when it is in local setpoint mode or manual output mode, has reached a setpoint or output limit, or is integral limiting because its BCI input. For example, see Figure 60.

Configuration parameters

The CARB properties dialog box is divided into seven tab cards

GENERAL RSP RANGE/LIMIT TUNING ACCUTUNE ALARMS CARBON POTENTIAL

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 11 describes the parameters and the value or selection.

Carbon Potential Function	n Block Properties	×
General RSP Range /	/Limit Tuning Accutune Alarms	Carbon Potential
Block		
Number 1	1 Tag Name CAP	B001
Order 1	1 Descriptor	
- Control	Start / Restart-	
Algorithm	PID A 🗾 Initial	mode Man LSP 💽
Direction	Reverse 🚽 Power up	mode Man LSP 💌
SP tracking	None 💽 Power u	p out Failsafe 💌
	Failsal	e out 0
		OK Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order	Read Only. See "Configure" Menu, "Execution Order" to change.
	Tag Name		8 character tag name	
	Descriptor		Block Descriptor	
Control	Algorithm	N/A	Control Algorithm	PID A - is normally used for 3
			Note: In PID B, step changes in setpoint will not bump the output; the output will slew smoothly to the new value.	mode control. The output can be adjusted somewhere between 100 % and 0 %. It applies all three control actions - Proportional (P), Integral (I), and Derivative (D) - to the error
			In PID A, a step change in setpoint will result in a step change in output.	signal. PID B - Unlike the PID-A equation, the controller gives only an integral response to a setpoint change, with no effect on the output due to the Gain or Rate action, and gives full response to PV changes.
				DUPA - like PIDA but provides an automatic method to switch tuning constant sets for Heat/Cool applications.
				DUPB - like PIDB but provides an automatic method to switch tuning constant sets for Heat/Cool applications.
				NOTE: With PID B or DUPB selection, you will not be allowed to set RESET or RPM to 0.00 (OFF). Reset must be enabled.
	Direction	N/A	Control Action	DIRECT - PID action causes output to increase as process variable increases.
				REVERSE - PID action causes output to decrease as process variable increases.
	SP Tracking	N/A	Setpoint Tracking	NONE
				TRACK PV When control mode is "manual", local setpoint tracks process variable.
				TRACK RSP When setpoint is "remote setpoint", local setpoint tracks remote setpoint.

Table 11 General tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Start/Restart	Initial Mode	N/A	Control Mode and Setpoint at NEWSTART	MAN LSP Manual control and last local setpoint
			Newstart is the first scan cycle following the cold start of the controller	AUTO LSP Automatic control and last local setpoint.
				AUTO RSP Automatic control and remote setpoint.
				MAN LSPonly Manual control and local setpoint only.
				AUTO LSPonly Automatic control and local setpoint only*.
				AUTO RSPonly Automatic control and remote setpoint only*.
				*These modes will override the configured POWER UP MODE.
	Power Up Mode	N/A	Control Mode and Setpoint at power up	MAN LSP Manual control and last local setpoint
				AM LSP Same control mode (auto or manual) and last local setpoint.
				AM LR Same control mode (auto or manual) and setpoint (local or remote) as at power- down.
	Power Up Out	N/A	Output at Power up	FAILSAFE Failsafe output value.
				LAST OUT Same as at power down.
Failsafe Out	Failsafe Out	16	Failsafe Output Value	–5 % to 105 %

RSP tab

General	RSP	Range / Limit	Tuning /	Accutune /	Alarms Cart	on Poter	ntial		
Rem	ote Setpoir	nt Source and	Units					7	
o	Use RSP I	input (EU)							
0	Use RSP I	nput (%)							
0	Use LSP2	(EU)							
	/ Bias (ap No Ratio d	ply to RSP Inp or Bias	out, not LSP						
0	Use Local	BIAS>		Local Bia	is value (EU)	q			
0	Use BIAS	input			Ratio	1			

It looks like this graphically on the Control Builder. Table 12 describes the parameters and the value or selection.

Table 12 RSP tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Remote Setpoint Source and Units	Use RSP Input (EU)	N/A	Use Remote Setpoint in Engineering Units	Click on radio button to select.
	Use RSP Input (%)	N/A	Use Remote Setpoint in Percent	Click on radio button to select.
	Use LSP2 (EU)	N/A	Use Local Setpoint #2 in Engineering Units	Click on radio button to select.
Ratio/Bias (RSP Input Only)	No Ratio or Bias	N/A	No ratio and bias applied to the function block	Click on radio button to select.
	Use Local Bias		Use Bias value selected on Tab	Click on radio button to select Enter value at " Local Bias Value " on tab.
	Use Bias Input		Use Bias value attached to an input to the block	Click on radio button to select.
	Local Bias 40 Value (EU)		Local bias value in engineering units	Enter local bias value.
	Ratio	39	Gain value for Ratio PID	-20 to +20

RANGE/LIMIT tab

It looks like this graphically on the Control Builder. Table 13 describes the parameters and the value or selection.

Carbon Potential Function Block Properti	ies	X
General RSP Range / Limit Tuning A	Accutune Alarms Carbon Potential	
Ranging	Limiting	
PV high range	SP high limit 100	
PV low range 0	SP low limit 0	
Display	Out high limit 105	
Decimal places 0	Out low limit -5	
Units	SP rate down (EU/Min)	
Dev bar range (EU) 3 100	SP rate up (EU/Min)	
	L	
	ОК	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Ranging	PV High range	4	PV High Range Value	-99999 to 99999
	PV Low Range	5	PV Low Range Value	-99999 to 99999
Display	Decimal Places	N/A	Number of digits to display after decimal point.	0 to 5
	Units	N/A	Text to display for EU	4 characters
	DEV Bar Range (EU)	N/A	Deviation Bar Range on Operator Interface	-99999 to 99999
Limiting	SP High Limit	11	Setpoint High Limit Value - prevents the local and remote setpoints from going above the value set here.	–99999 to 99999 Used for anti-soot
	SP Low limit	12	Setpoint Low Limit Value - prevents the local and remote setpoints from going below the value set here.	–99999 to 99999
	Out High Limit	14	Output High Limit Value - is the highest value of output beyond which you do not want the automatic output to exceed	–5 % to 105 %
	Out Low Limit	15	Output Low Limit Value - is the lowest value of output beyond which you do not want the automatic output to exceed	-5 % to 105 %
	SP Rate Down	35	Setpoint Rate Down value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint down to the new one.	0 (off) to 9999 (eu/min)
	SP Rate Up	36	Setpoint Rate Up value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint up to the new one.	0 (off) to 9999 (eu/min)

Table 13	Range/limit tab	configuration parameters
----------	-----------------	--------------------------

TUNING tab

It looks like this graphically on the Control Builder. Table 14 describes the parameters and the value or selection.

Carbon Potential Function Blo	ck Properties 🛛 🗙
General RSP Range / Limit	Tuning Accutune Alarms Carbon Potential
Tuning Constants	
_	Set 1 Set 2
Gain: 💽 🚺	
Reset Minutes:	0
Rate (Minutes)	
Feed Forward Gain	
Manual Reset	2 %
	OK Cancel

Table 14	Tuning tab	configuration	parameters
----------	------------	---------------	------------

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Tuning Constants	Prop Band or	0 PB1 or Gain 1	Proportional Band (PB) - is the percentage of the range of the measured variable for which a proportional controller will produce a 100 % change in its output.	0.1 to 1000 0.1% to 1000 %
	Gain	30 PB2 or gain 2	Gain - is the ratio of output change (%) over the measured variable change (%) that caused it.	
			G = <u>100 %</u> PB %	
			where PB is the proportional Band (in %)	

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
	Reset Minutes or Repeats/ Minute	2 Reset 1 32 Reset 2	RESET (Integral Time) - adjusts the controller's output according to both the size of the deviation (SP-PV) and the time it lasts. The amount of corrective action depends on the value of Gain. The reset adjustment is measured as how many times proportional action is repeated per minute (Repeats/minute) or how many minutes before one repeat of the proportional action occurs (Minutes/repeat).	0.02 to 50.00 <i>Must be enabled for</i> <i>PID-B or DUP-B algorithm</i> <i>selections.</i>
	Rate Minutes	1 Rate 1 31 Rate 2	RATE action, in minutes affects the controller's output whenever the deviation is changing; and affects it more when the deviation is changing faster.	0 or 0.1 to 10.00 minutes 0 = OFF
Feedforward Gain	Feed- Forward Gain	37	Applies Gain to the Feedforward value (FFV). Feedforward Input is multiplied by this value.	0.0 to 10.0
Manual Reset	Manual Reset	26	MANUAL RESET- is only applicable if you do not use RESET (Integral Time).	–100 to 100 (in % of Output)

ATTENTION

DUPA and DUPB algorithm types automatically select tuning set #2 for outputs between 50 % and –5 %. Tuning set #2 must be entered for DUPA and DUPB.

ACCUTUNE tab

It looks like this graphically on the Control Builder. Table 15 describes the parameters and the value or selection.

Carbon Potential Function Block Prope	erties				×
Carbon Potential Function Block Prope General RSP Range / Limit Tuning Accutune Type Disabled On Demand		Alarms	Carbon	Potential	X
					 Concel
				OK	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection	
Accutune Type	Disabled	N/A	Disables Accutune	Click on radio button to select	
	On Demand		When initiated at the operator interface or the LPSW function block, the controller will start controlling to the setpoint while it identifies the process, calculates the tuning constants, and begins PID control with the correct tuning parameters.	Click on radio button to select	
🔽 Enable Fuzzy Oversł	Enable Fuzzy Overshoot Suppression		Fuzzy Overshoot Suppression minimizes overshoot after a setpoint change or a process disturbance.		
Click on block to select			The fuzzy logic observes the speed and direction of the PV signal as it approaches the setpoint and temporarily modifies the internal controller response action as necessary to avoid an overshoot.		
			There is no change to the CARB algorithm, and the fuzzy logic does not alter the CARB tuning parameters.		
			This feature can be independently required by the application to work tuning.		

Table 15 Accutune tab configuration parameters

ATTENTION

Accutune is an On-demand tune only. You must provide a 0 to 1 transition to start another tuning cycle. The tuning will disturb the output to evaluate the tuning constants required.

ALARMS tab

It looks like this graphically on the Control Builder. Table 16 describes the parameters and the value or selection

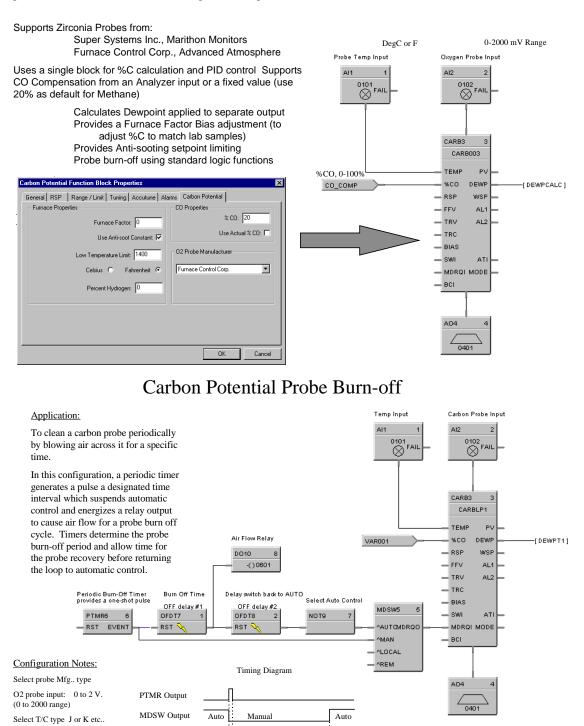
Carbon Potential Function E	lock Properties			×
General RSP Range / Li	nit Tuning Accutune	Alarms	Carbon Potential	
Alarm 1				
Setpoint 1 🚺		Туре	No Alarm 💌	
Setpoint 2		Туре	No Alarm 💌	
Alarm 2				
Setpoint 1		Туре	No Alarm 💌	
Setpoint 2		Туре	No Alarm 💌	
Hysteresis (%)				
			ОК	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Alarm 1	Setpoint 1	17	Alarm 1 Setpoint 1 Value - this is the value at which you want the alarm type chosen below to activate	–99999 to 99999 in Engineering Units
	Туре	N/A	Alarm 1 Setpoint 1 Type - select what you want Alarm 1 Setpoint 1 to represent.	Selections: NO ALARM PV_HIGH PV_LOW DEV_HIGH DEV_LOW SP_HIGH SP_LOW OUT_HIGH OUT_LOW
	Setpoint 2	18	Alarm 1 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 1 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm 2	Setpoint 1	19	Alarm 2 Setpoint 1 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 1 Type	Same as Alarm 1 Setpoint 1
	Setpoint 2	20	Alarm 2 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm Hysteresis	Hysteresis	25	Alarm Hysteresis in %	0 % to 5 %

Table 16	Alarms tab	configuration	parameters
----------	------------	---------------	------------

CARBON POTENTIAL tab

It looks like this graphically on the Control Builder. Table 17 describes the parameters and the value or selection.


Carbon Potential Function Block Properties	×
General RSP Range / Limit Tuning Accutune Alarm	ns Carbon Potential
Furnace Properties	CO Properties
Furnace Factor:	% CO: 20
Use Anti-soot Constant: 🗖	Use Actual % CO: 🗖
Low Temperature Limit: 0	02 Probe Manufacturer
Celsius O Fahrenheit 💿	Unknown
Percent Hydrogen: 40	
	OK Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Furnace Properties	Furnace Factor	45	Allows you to adjust the % Carbon as measured by the controller to agree with the results of actual shim stock tests. This adjustment may be needed to correct for specific furnace characteristics such as atmosphere differences, probe location, and furnace leaks.	–0.5 %C to +0.5 %C
	Use Anti-cost Constant.	46	Activates anti-sooting feature that limits the working setpoint of the carbon control loop to a value that prevents sooting in the furnace.	Click on block to select SP HLIM is used for anti- soot.
	Low Temperature Limit48Holds controller output to 0 % until limit is exceeded.		0 to 2500 degrees F (1400° recommended) Unit should match C/F selection	
Cobin P Foly		47	Probe temperature units for display.	Click on radio button to select
	Percent Hydrogen	50	Percent Hydrogen	1 to 100 default = 40
CO Properties	%СО	43	Allows you to adjust % Carbon measurement to compensate for variations in the amount of CO in the carrier gas.	2.0 to 35.0 default = 20
	Use Actual % CO:	44	Function block will use the actual % Carbon Monoxide that is defined through an analog input.	Click on block to select
O2 Probe Manufacturer	Carbon Probe Vendor	N/A	Select from Drop Down List of Manufacturers.	 Advanced Atmosphere Control Corp. Furnace Control Corp. Marathon Monitors Super Systems Inc.

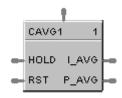
Table 17	Carbon potentia	l tab configuration	parameters
----------	-----------------	---------------------	------------

Example

Figure 13 shows Function Block Diagrams using a CARB function block.

Off delay #2

Off delay #1


Burnoff Time

Time Delay to AUTO

CAVG Function Block

Description

The **CAVG** label stands for **Continuous Average.** This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Provides the average value of a single analog parameter for a user specified time period, plus the running (instantaneous) average within the time period. A running average value is updated at the end of each sample period. Time periods to 1440.0 minutes are supported. At the end of the time period, the running average value is transferred to I/O process output value. A hold input allows excluding samples from the average when active.

Cold Start – On the first cycle after a cold start, the instantaneous average output is initialized to current input value, the sample counter begins to increment, and the period timer begins to decrement (assuming that Reset is OFF). The previous average output is set to zero.

Warm Start – On a warm start, the calculations continue where they left off. There is no attempt to compensate for the time the power was off or to resynchronize with the time of day.

Input

INPUT = Analog Input

RESET = Controls the sample calculations.

If **OFF**, the input samples are accumulated, the sample counter is incremented, the time remaining decrements and the average value is calculated and written to the outputs.

If **ON**, the outputs are held at their last values, the internal accumulators and sample counters are cleared, and the time remaining is re-initialized to the full average period.

If **ON to OFF transition**, the average output is set to the input value, and the period timer begins to decrement.

The RESET pin does not affect the previous average output value.

HOLD = If **OFF**, calculations run as normal. If **ON**, input samples are not accumulated and included in the average calculation, the time remaining continues to decrement. The output values are held at their last state prior to the OFF to ON transition.

If the averaging period elapses while **HOLD is ON**, the instantaneous average will maintain the last calculated average value, the previous average is updated to this value, the internal accumulators and sample counters are cleared, and the time remaining is re-initialized to the full averaging period.

Output

I AVG = Instantaneous calculation of the current average. **P AVG** = previous calculated average value.

Block properties

Continuous Average Properties	×
Block Number 1 Order 1	OK Cancel
Set Avg. Period Averaging Period (minutes) 0.1	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the CAVG function block parameters to the desired value or selection that matches your operating requirements.

Table 18 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Avg. Period	Averaging Period	0	Time period in which the Continuous Average will be calculated. When the averaging period elapses, the last valid value will be set equal to the instantaneous value. The internal accumulators and sample counters will be cleared and the time remaining will be re-initialize to the full average period.	0.1 to 1440.0 in minutes

Table 18	Continuous average configuration parameters
----------	---

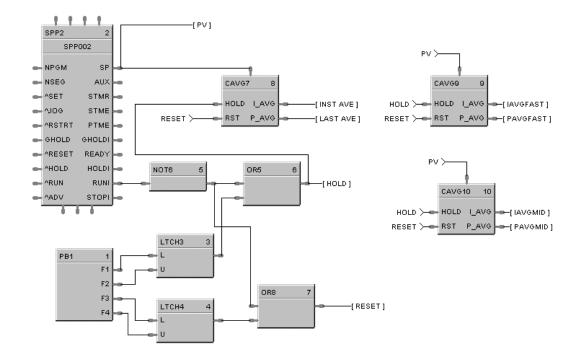


Figure 14 shows a Function Block Diagram using a CAVG function block.

Figure 14 CAVG function block example

CMPR Function Block

Description

The **CMPR** label stands for **Comparison Calculation.** This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Compares value of X input to value of Y input and turns **ON** one of three outputs based on this comparison.

- If X input is greater than Y input, then: **XGY = ON.**
- If X input equals Y input, then: **XEY = ON.**
- If X input is less than Y input, then: **XLY = ON.**

Input

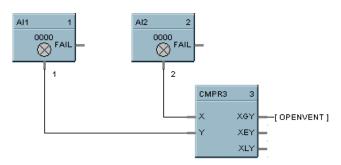
- **X** = First analog value.
- $\mathbf{Y} = \mathbf{Second}$ analog value

Output

XGY = Digital signal state based on calculation. **XEY** = Digital signal state based on calculation.

 $\mathbf{XLY} = \mathbf{Digital \ signal \ state \ based \ on \ calculation.}$

Block properties

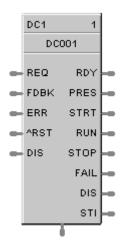

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 15 shows a Function Block Diagram using a CMPR function block to open a vent if input 1 is higher than input 2.



DC Function Block

Description

The **DC** label stands for **Device Control.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

The Device Control function block is normally used to control pumps. Based on certain events listed in Table 19 the device will be placed into one of six states: READY, PRESTART, STARTING, RUNNING, STOPPING, DISABLED, or FAILED. The READY (off state) is the initial state of the function block. Each configuration is limited to a maximum of 16 Device Control function blocks. Forcing of outputs is NOT permitted within this block.

Inputs

REQ = (run request) when ON [Logic 1], puts the device in the Starting / Running state. When OFF, puts the device in Stopping / Ready state.

FDBK = feedback from the controlled device; ON = device has started, OFF = device has not started.

 $\mathbf{ERR} = (in) - ON$ when the controlled device reports a failure, causes the device control to transition to the FAILED state.

OFF = No device failure.

 $^{\mathbf{RST}}$ = an OFF to ON transition will manually reset the control when it is in the FAILED state and return to the READY state.

DIS = (disable) When OFF, the device control operates normally. When ON, immediately transitions to the DISABLED state, it prevents the device from starting if in the ready state or immediately shuts-down the device if it is currently starting up or running state.

Outputs

OUT = Primary block output – the output is ON in the RUNNING and STOPPING states, else OFF.

RDY = (ready) ON when the control is in the Ready State (the controlled device is off and waiting for a request to run), otherwise OFF.

PRES = (prestart) ON while in the prestart state (a request to run the device has been received and the start delay timer is >0, otherwise OFF.

STRT = (starting) ON while in the start state (start timer has expired and there is a request to start the device. The device feedback timer is started. The device is being monitored for failures),

RUN= (running) ON while in the Running state (the controlled device has completed start up (Device Feedback) and is now running; occurs after the start delay timer expires; device is being monitored for failures and feedback that it started) otherwise OFF.

STOP = (stopping) ON while in the Stopping state (the controlled device is requested to turn off; stop delay timer is running; device is being monitored for failures, interlocking and returning to the run state), otherwise OFF.

FAIL = (failed) ON when the control is in the Failed state (the controlled device reported a failure or did not start up in time; device is being monitored for a manual or automatic reset), otherwise OFF.

DIS = (disabled) ON while in the Disabled state (the controlled device is locked-out; it cannot start running until the disable input signal turns OFF), otherwise OFF.

STI = An enumeration representing the different states of the control. Where: 0 = NOT USED, 1 = READY, 2 = PRESTART, 3 = STARTING, 4 = RUNNING, 5 = STOPPING, 6 = FAIL, 7 = DISABLE.

Conditions for transition from FAIL to READY state

One of the following conditions must occur to transition from the FAIL state to the READY state:

- a) If a Feedback error is the initial reason for the failure, then a manual reset is the only method for returning to the Ready state.
- b) If Automatic-Reset is selected, then you return to the Ready state when Device Failure input turns OFF.
- c) If Automatic-Reset is not selected, then you return to the Ready state when Device Failure input is OFF and the Reset input transitions OFF to ON.

Monitored events and device states

Table 19 shows which events are monitored in each state.

Table 19 Monitored events and device states

MONITORED	DEVICE STATES						
EVENTS	READY (Note 1)	PRE- START	START- ING	RUN- NING	DISABLED (Notes 1,2)	STOPPING	FAILED
Run Request turns ON	X					X	
Run Request turns OFF		X	X	Х			
Disable (ON)	X	X	x	Х		X	
Disable (OFF)					X		
Feedback from Device			X	Х			
Device (ERR) Fail ON	X		X	Х		X	
Device (ERR) Fail OFF							X Note 3
Reset (Rising Edge)							Х
Start Delay Timer Expires (edge)		x					
Feedback Timer Expires (edge)			X	х			
Stop Delay Timer Expires (edge)						X	

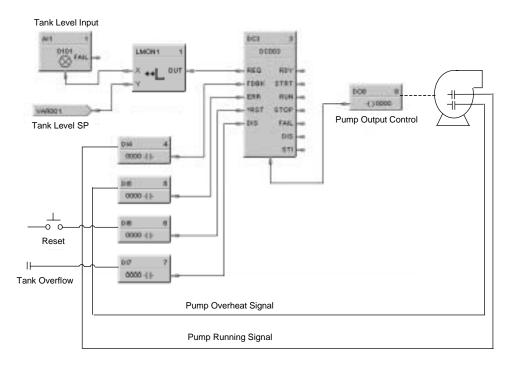
Notes:

- 1. If a device fails while in the state of READY or DISABLE, the device failure is not recognized until the control goes into the PRESTART state.
- 2. There are restrictions when the control goes into the Disable state from the Running State. The device is immediately turned OFF without a Stop Delay. When the disable turns OFF, the control changes to the Ready state.
- 3. ERR Off (device fail) is monitored in Failed state, only if:
 - a) Failed input caused the failure, and
 - b) Auto Reset is enabled.

Device Control Properties
Display
Tag Name DC001
Descriptor
Settings
On Delay Time (sec)
Off Delay Time (sec)
Feedback Delay Time (sec)
Automatic Reset
OK Cancel

Double click on the function block to access the function block properties dialog box.

Configuration parameters


You must configure the DC function Block parameters to the desired value or selection that matches your operating requirements. Table 20 describes the parameters and the value or selection.

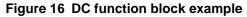

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Display	Tag Name	N/A	8-character tag name	
	Descriptor	N/A	Block description	16 characters maximum
Settings	On Delay Time (sec)	1	Starting Time – time delay between RUN request and Output ON. This parameter is configurable from the Operator Interface.	Range: 0 – 99999 seconds (default 0)
	Off Delay Time (sec)	2	Stopping Time – time delay before the Output turns OFF after and OFF request. This parameter is configurable from the Operator Interface.	Range: 0 – 99999 seconds (default 0)

Table 20 Device control function block parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
	Feedback Delay Time (sec)	3	Feedback-Fail-Delay: if during this time-period there is no feedback from a device confirming the control is in the Running state, then the block entrs the FAIL state and Out is turned OFF. If a device sends feedback during this time-period, then this timer is reset. This parameter is configurable from the Operator Interface.	Range: 0 – 99999 seconds (default 0)
	Automatic Reset (Click on Box to turn ON)	0	if set to AUTO, then the block will reset itself after the failure (Fail input) turns off. If set to MANUAL, a Reset (signal input or from the Operator Interface station) is required to remove the failure condition. This parameter is determined when the block is configured.	ON = Automatic Reset (<i>box selected</i>) OFF = Manual Reset (<i>box deselected</i>)

Figure 16 shows a Function Block Diagram using a Device Control function block to control a pump to fill a tank.

DCMP Function Block

Description

The **DCMP** label stands for **Deviation Compare.** This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Compares up to 6 analog inputs to a + or - user-entered deviation setpoint to a 7th input reference value and sets the output true if any input exceeds the deviation value from the reference value. Output is off if all inputs are less than the deviation.

ATTENTION

When the reference input is the average of the 6 inputs, the block performs deviation from average.

Input

IN1 = Input 1 **IN2** = Input 2 **IN3** = Input 3 **IN4** = Input 4 **IN5** = Input 5 **IN6** = Input 6 **Y** =Reference Input

ATTENTION

All inputs should be used or a single value should be connected to multiple inputs. Unused inputs will default to 0.

Output

OUT = Hi (1) when any input exceeds the specified deviation from the reference value.

Deviation Compare	×
Block Number 2 Order 2	OK Cancel
- Set Properties Plus Deviation Minus Deviation	0

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the DCMP function block parameters to the desired value or selection that matches your operating requirements.

Table 21 describes the parameters and the value or selection.

Properties Group	Parameter	Parameter Description	Value or Selection
Set Properties	Plus Deviation	Plus value deviation from reference point	Within the range of the inputs
	Minus Deviation	Minus value deviation from reference point	Within the range of the inputs

Figure 17 shows a Function Block Diagram using a DCMP function block to hold a setpoint program if any of 6 work thermocouples deviate from the setpoint by more than the \pm Deviation Limits.

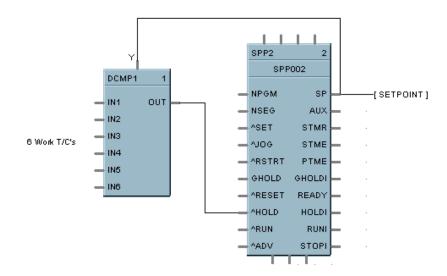


Figure 17 DCMP function block example

DENC Function Block

Description

The **DENC** label stands for **Digital Encoder**. This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

This block's main function is to totalize the number of ON states from up to 16 digital signals. The block digitally encodes up to 16 digital inputs to a single floating point output value.

Forcing of the output is not permitted.

Inputs

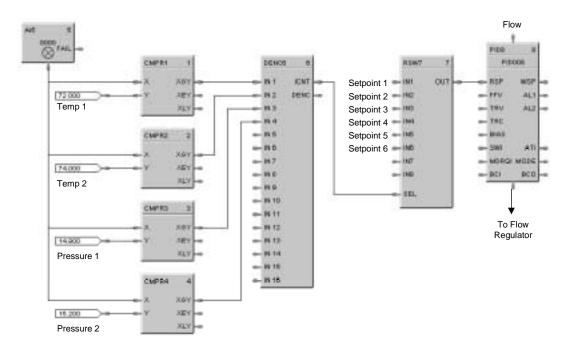
Sixteen digital inputs: Example: ON causes the input to be included in the total output. Unconnected pins default to OFF.

IN 1	= Digital Input 1	IN 9	= Digital Input 9
IN 2	= Digital Input 2	IN 10	= Digital Input 10
IN 3	= Digital Input 3	IN 11	= Digital Input 11
IN 4	= Digital Input 4	IN 12	= Digital Input 12
IN 5	= Digital Input 5	IN 13	= Digital Input 13
IN 6	= Digital Input 6	IN 14	= Digital Input 14
IN 7	= Digital Input 7	IN 15	= Digital Input 15
IN 8	= Digital Input 8	IN 16	= Digital Input 16

Outputs

ICNT = Sum of the Inputs set to ON.

DENC = Not Used


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 18 shows a Function Block Diagram using a DENC function block using multiple digital status to select an appropriate setpoint for a flow loop.

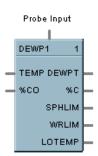


Figure 18 DENC function block example

DEWP Function Block

Description

The **DEWP** label stands for **Dewpoint** Calculation. This block is part of the *Calculations* category. It looks like this graphically on the Control builder.

Function

Monitors Dewpoint or Carbon Potential, or uses a Zirconia Probe sensor input to supply a Dewpoint PV to a PID function block for Dewpoint control. Use in conjunction with other blocks including a PID to generate more elaborate control strategies than that provided by the Carbon potential (CARB) function block.

Inputs

Probe = Oxygen Sensor Input from AI (0-2 mV) **TEMP** = Temperature Input (°F or °C) from AI Input %CO = Percent Carbon Monoxide Input 1 - 100 %

Outputs

DEWPT = Calculated Dewpoint Output
%C = Calculated Percent Carbon Output
SPHLIM = Control Setpoint High Limit for Anti-soot.
WRLIM = Command to write the setpoint high limit.
LOTEMP = ON when TEMP is <= calculated low temperature dropoff.

Block properties

Dewpoint Calculation	×
Furnace Properties Furnace Factor: 0 Use Anti-soot Constant:	Block 2 Order 2 CD Properties
Low Temperature Limit 🛛	% C0: 20 Use Actual % C0: □
Percent Hydrogen: 40	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the DEWP function Block parameters to the desired value or selection that matches your operating requirements. Table 22 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Furnace Properties	Furnace Factor	2	Allows you to adjust the % Carbon as measured by the controller to agree with the results of actual shim stock tests. This adjustment may be needed to correct for specific furnace characteristics such as atmosphere differences, probe location, and furnace leaks.	–0.5 %C to +0.5 %C
	Use Anti-cost Constant	3	Activates anti-sooting feature that limits the working setpoint of the carbon control loop to a value that prevents sooting in the furnace.	Click on block to select SP HLIM is used for anti- soot.
	Low Temperature Limit	5	Holds controller output to 0 % until limit is exceeded.	0 to 2500 degrees F (1400° recommended) Unit should match C/F selection
	Cebias 97 Fohrenheit	4	Probe temperature units for display.	Click on radio button to select
	Percent Hydrogen	7	Percent Hydrogen	1 to 100 default = 40
CO Properties	%СО	0	Allows you to adjust % Carbon measurement to compensate for variations in the amount of CO in the carrier gas.	2.0 to 35.0 default = 20
	Use Actual % CD: 1	1	Function block will use the actual % Carbon Monoxide that is defined through an analog input.	Click on block to select
O2 Probe Manufacturer	Carbon Probe Manufacturer	N/A	Select from Drop Down List of Manufacturers.	 Advanced Atmosphere Control Corp. Furnace Control Corp. Marathon Monitors Super Systems Inc.

Table 22 Dewpoint function block parameters

Figure 19 shows a Function Block Diagram using a DEWP function block. This application uses the Dew Point function block to calculate dew point based on using a carbon probe. A typical example might be for control of an endothermic atmosphere generator. Alternatively, a Honeywell dew point transmitter could be used for a more direct measurement.

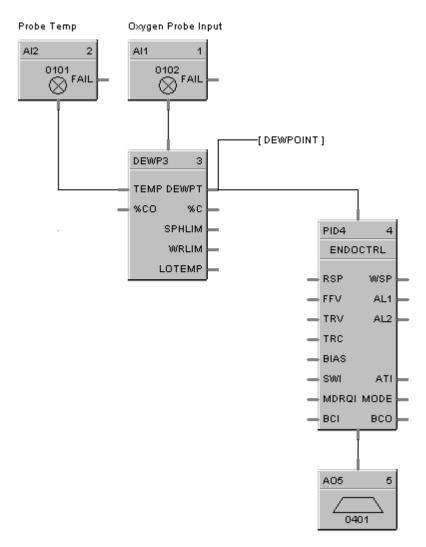


Figure 19 DEWP function block example

DI Function Block

Description

The **DI** label stands for **Discrete Input.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Discrete input blocks are used to process the digital status of a specific channel of a discrete input module. Each block requires a module and channel number during configuration. The Input status may be inverted.

If Digital Point is ON, then OUT = ON.

Output

OUT = Digital Signal

Block properties

Digital Input	t Propertie	es			×
Block				OK	
	Number	3		Cancel	12.2
	Order	3	1 Sund		
Address					1
	Module				
	Channel	0 -			
🗖 Invert					

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the DI function Block parameters to the desired value or selection that matches your operating requirements. Table 23 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Address	I/O Module	0	Address of select I/O Module From 6 to 16	
	Channel		Channel on selected I/O Module	From 1 to 6
☐ Invert		1	If INVERT is selected, OUT = inverse of physical input. The slash will be present in the CONTACT symbol only when the invert box is selected on the dialog box. (See below.)	

Table 23 Digital input configuration parameters

Example

Figure 20 shows a Function Block Diagram using DI function blocks in a basic Series Parallel Circuit.

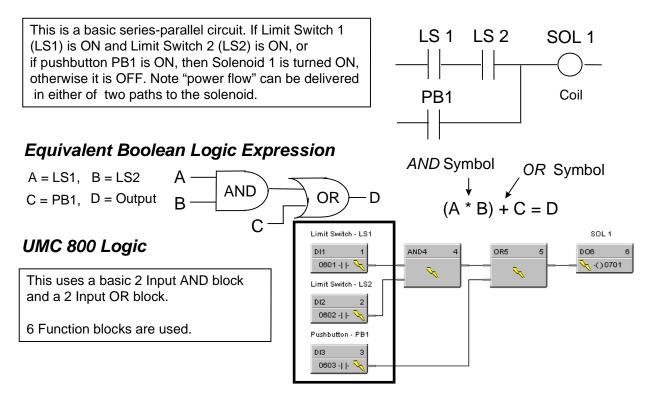
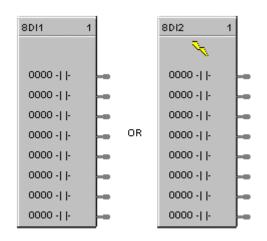



Figure 20 Digital input function block example

8DI Function Block

Description

The **8DI** label stands for **Eight Point Digital Inputs.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Provides read access for up to 8 physical digital inputs.

It minimizes the number of blocks required to configure all of the Digital I/O required in a system. Digital input blocks are used to process the digital status of specific channels of a digital input module. Each block input requires a module and channel number during configuration.

The Input status may be inverted.

If Digital Point is ON, then OUT = ON.

Output

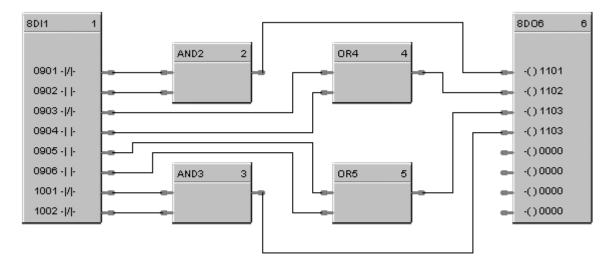
OUT D1= Digital Signal OUT D2= Digital Signal OUT D3= Digital Signal OUT D4= Digital Signal OUT D5= Digital Signal OUT D6= Digital Signal OUT D7= Digital Signal OUT D8= Digital Signal

Digital Inpu	ıt Properties		×
- Block	Number 1 Order 1		Cancel
Input	Module	Channel	Invert
1	0 -	0 .	
2	0 =	0 *	
3	0 =	0 🔺	
4	0 =	0 -	
5	0 =	0 -	
6	0 =	0 🔺	
7	0 =	0 *	
8	0 *	0 *	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.


Configuration parameters

You must configure the 8 point DI function Block parameters to the desired value or selection that matches your operating requirements. Table 24 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Input 1 through	I/O Module	0	Address of selected I/O Module	From 1 to 16
Input 8	Channel		Channel on selected I/O Module	From 1 to 6
Invert		1	If INVERT is selected, OUT = inverse of physical input. The slash will be present in the CONTACT symbol only when the invert box is selected on the dialog box. (See below.)	
			0101 -//-	-

 Table 24 Eight Digital input configuration parameters

Figure 21 shows a Function Block Diagram using 8 point DI function blocks.

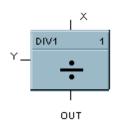

In this example, two blocks are used for a total of 12 digital I/O points.

Figure 21 8Point DI function block example

DIV Function Block

Description

The **DIV** label stands for **Division** Mathematical operation. This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Divides one input (X) by another (Y)

• If Y = 0, then OUT = 0 and block status is set to error; otherwise, $OUT = X \div Y$.

Input

 $\mathbf{X} =$ First analog value

 $\mathbf{Y} = \mathbf{Second}$ analog value

Output

OUT = Calculated Value

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 22 shows a Function Block Diagram using a DIV function block.

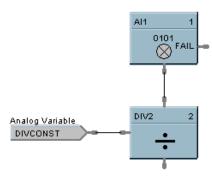
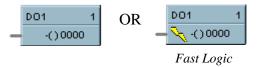



Figure 22 DIV function block example

DO Function Block

Description

The **DO** label stands for **Digital Output.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Provides a digital status from the algorithms and functions to physical logic output hardware. Each block requires a module and channel number during configuration. The output status may be inverted.

Input

X = Input Status Signal

Output

None

Block properties

Digital Outp	ut Proper	ties	×
Block	Number Order		Cancel
- Address	Module		
☐ Invert	Channel		

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the DO function Block parameters to the desired value or selection that matches your operating requirements. Table 25 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Address	I/O Module	N/A	Address of select I/O Module From 1 to 16	
	Channel		Channel on selected I/O Module	From 1 to 6
☐ Invert		1	If INVERT is selected, Invert IN before writing to output The slash will be present in the COIL symbol only when the invert box is selected on the dialog box. (See below.)	

Table 25 Digital output configuration parameters

Example

Figure 23 shows a Function Block Diagram using a DO function block. A digital output signal from PID block AL1 will turn the Digital Output block ON & OFF for remote alarming. This output could be OR'd with other alarm outputs if going to a common alarm relay.

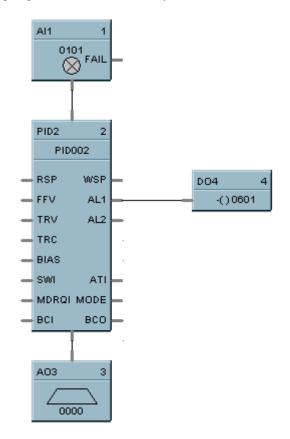
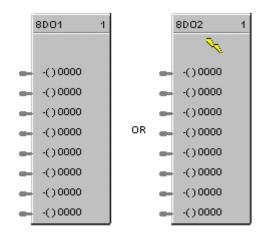



Figure 23 DO function block example

8DO Function Block

Description

The **8DO** label stands for **Eight Point Digital Outputs.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Provides write access to any physical digital output. (All read at the same time) It minimizes the number of blocks required to configure all of the digital I/O required in the system. It provides a digital status from the algorithms and functions to physical logic output hardware. Each block output requires a module and channel number during configuration. The output status may be inverted.

Input

IN D1 = Input Status Signal IN D2 = Input Status Signal IN D3 = Input Status Signal IN D4 = Input Status Signal IN D5 = Input Status Signal IN D6 = Input Status Signal IN D7 = Input Status Signal IN D8 = Input Status Signal

Output

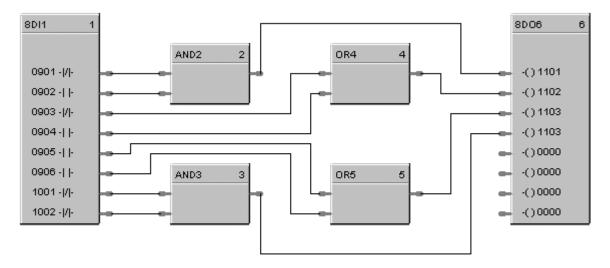
None

Digital Outp	put Properties	:	×
Block			OK
	Number 1	di di	Cancel
	Order 1		
Output	Module	Channel	Invert
1	0 -	0 .	
2	0 -	0 .	
3	0 -	0 +	
4	0 -	0 +	
5	0 -	0 -	
6	0 -	0 *	. .
7	0 4	0 1	
8	0 -	0 .	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.


Configuration parameters

You must configure the 8Point DO function Block parameters to the desired value or selection that matches your operating requirements. Table 26 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Output 1 through 8	I/O Module	N/A	Address of select I/O Module	From 1 to 16
	Channel	-	Channel on selected I/O Module	From 1 to 16
			NOTE: If you don't want to use an o Module # and Channel # at 0.	output pin, leave the
☐ Invert		1	If INVERT is selected, Invert IN before writing to output The slash will be present in the COIL symbol only when the invert box is selected on the dialog box. (See below.)	

 Table 26 Eight Digital output configuration parameters

Figure 24 shows a Function Block Diagram using a 8 Point DO function block.

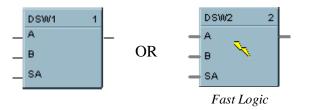

In this example, two blocks are used for a total of 12 digital I/O points.

Figure 24 8 Point DO function block example

DSW Function Block

Description

The **DSW** label stands for **Digital Switch.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Sets the output of the block equal to either input A or Input B depending on the value of input SA. If input SA (Select A) is ON, then OUT = Input A, otherwise OUT = Input B.

Input

 $\mathbf{A} = 1^{st}$ of two inputs to select from.

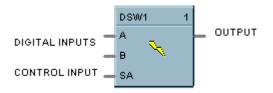
 $\mathbf{B} = 2^{nd}$ of two inputs to select from.

SA = Select A

Output

Out = If SA is ON, then A, else B.

Block properties

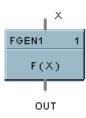

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 25 shows an example of a DSW function block. The output is switched **between two digital inputs** based on the ON or OFF state of the **control input**. Output = A input state when SA input is OFF and B input state when SA input is ON.



FGEN Function Block

Description

The **FGEN** label stands for **Function Generator - 10 Segment**. This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder:

Function

Generate output characteristic curve based on up to 11 configurable "Breakpoints" for both input (X) and Output (OUT) values.

OUT = interpolation of OUT (Yb) values for segment in which X falls.

- If X <= X (1), then OUT = OUT (1)
- If $X \ge X$ (11), then OUT = OUT (11)

ATTENTION

The X(n) value must be < X(n+1) value. Thus, if fewer than 11 breakpoints are needed, be sure to configure any unneeded breakpoints with the same X and OUT values used for the previous breakpoint.

Input

 $\mathbf{X} = Analog Value$

Output

OUT = Calculated Analog Value

Functio	n Genera	ator Propert	ies	×
Block	1	Number		
		Order 1		
Break	points			د. اندار
4	Inp	uts	Outputs	
X	1 0	>	0	Y1
X	2 0	>	0	Y2
×	3 0	>	0	Y3
×	4 0	>	0	Y4
×!	5 0	>	0	Y5
×	6 0	>	0	Y6
×	7 0	>	0	Y7
×	3 0	>	0	Y8
×	9 0	>	0	Y9
×	10 0	>	0	Y10
×	11 0	>	0	Y11
		Clear A		file file file

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the FGEN function Block parameters to the desired value or selection that matches your operating requirements. Table 27 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Block Order			Read Only. See "Configure" Menu, "Execution Order" to change.
Breakpoints	X1	0	X-value at Input Breakpoint 1	-99999 to 999999
	X2	1	X-value at Input Breakpoint 2	-99999 to 999999
	X3	2	X-value at Input Breakpoint 3	-99999 to 999999
	X4	3	X-value at Input Breakpoint 4	-99999 to 999999
	X5	4	X-value at Input Breakpoint 5	-99999 to 999999
	X6	5	X-value at Input Breakpoint 6	-99999 to 999999
	X7	6	X-value at Input Breakpoint 7	-99999 to 999999
	X8	7	X-value at Input Breakpoint 8	-99999 to 999999
	X9	8	X-value at Input Breakpoint 9	-99999 to 999999
	X10	9	X-value at Input Breakpoint 10	-99999 to 999999
	X11	10	X-value at Input Breakpoint 11	-99999 to 999999
	Y1	11	Y-value at Output Breakpoint 1	-99999 to 999999
	Y2	12	Y-value at Output Breakpoint 2	-99999 to 999999
	Y3	13	Y-value at Output Breakpoint 3	-99999 to 999999
	Y4	14	Y-value at Output Breakpoint 4	-99999 to 999999
	Y5	15	Y-value at Output Breakpoint 5	-99999 to 999999
	Y6	16	Y-value at Output Breakpoint 6	-99999 to 999999
	Y7	17	Y-value at Output Breakpoint 7	-99999 to 999999
	Y8	18	Y-value at Output Breakpoint 8	-99999 to 999999
	Y9	19	Y-value at Output Breakpoint 9	-99999 to 999999
	Y10	20	Y-value at Output Breakpoint 10	-99999 to 999999
	Y11	21	Y-value at Output Breakpoint 11	-99999 to 999999
Clear All Button		Click on bu	Itton to clear all breakpoint values.	•

Table 27	Function	generator	configuration	parameters
----------	----------	-----------	---------------	------------

Figure 26 shows a function block diagram using a FGEN function block to characterize the PID control loop output for control valve operation using 9 breakpoints.

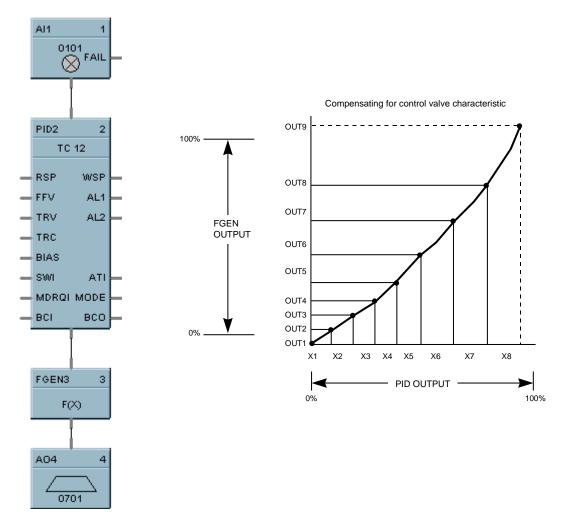
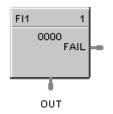



Figure 26 FGEN function block example

FI Function Block

Description

The **FI** label stands for **Frequency Input.** This block is part of the *Logic* category. It looks like this graphically on the Control Builder.

Function

This function block reads a single frequency channel from a pulse-frequency-input module. It scales inputs from the module to user-configured engineering units per unit time. The function is used for measuring speed and flow rate. The frequency high and low limits are sent to the module and the module will respond with FAIL or the frequency input value.

Inputs

None

Outputs

FAIL = A Boolean value that turns ON when the Pulse/Frequency input module reports a failure.

OUT = The frequency input value in engineering units (after needed ranges, bias, or failsafe conditions have been applied).

The formula for calculating the Output value is:

$$OUT = \left(\frac{FREQ_{IN} - FREQ_{ZERO}}{FREQ_{SPAN} - FREQ_{ZERO}}\right) * (EU_{HIGH} - EU_{LOW}) + EU_{LOW} + BIAS$$

The generic forcing of outputs is not permitted.

Frequency Input Properties	×
Block Number 1 Order 1	Frequency Span Set High Input (Hz) 10000 Set Low Input (Hz) 100
Address Module 0 = Channel 0 =	Range in EU High (EU) 100 Low (EU) 0
Settings Filter Time (sec) 0 Bias 0	Failsale C Use Value> D C Down scale C Up scale
0K.	Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the FI function Block parameters to the desired value or selection that matches your operating requirements. Table 22 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Address	I/O Module	N/A	Address of select I/O Module	From 1 to 16
	Channel	N/A	Channel on selected I/O Module	From 1 to 4
Settings	Filter Time (sec)	2	Filter Time Constant	0 – 120 seconds Default = 0
	Bias	3	Bias value applied to the Output	0-100000 EU Default = 0
Frequency Span	Set High Input (Hz)	9	Frequency High Input Highest value of the input device – must be larger than the lower Input	10Hz to 100KHz Default = 10KHz
	Set Low Input (Hz)	8	Frequency LOwLimit Low value of the input device	10Hz to 100KHz Default = 100Hz

Table 28 Frequency input function block parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Range in EU	High (EU)	6	Out high limit in EU	0-1000000 EU Default = 100
	Low (EU)	7	Out low limit in EU	0-1000000 EU Default = 0
Failsafe	Use Value	4	The output value to which the output will go to protect against the effects of failure of the equipment	Failsafe value in Engineering Units
	Downscale	N/A	Use Range Low	Click on Radio button to select
	Upscale	N/A	Use Range High	Click on Radio button to select

Figure 27 shows a Function Block Diagram using a FI function block for a Flow control loop with Pulse output and Flowmeter input.

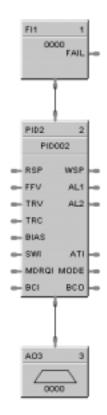
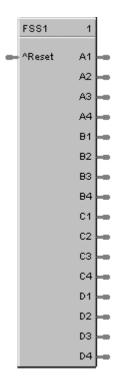



Figure 27 FI function block example

FSS Function Block

Description

The **FSS** label stands for **Four-Selector Switch**. This block is part of the *Logic* category. It looks like this graphically on the Control Builder:

Function

Provides 16 digital outputs in groups of four. A dedicated display allows activating of only one output per group while other outputs are turned off.

Inputs

RESET = Off to ON requests a reset state. Reset Input turns on #1 output of all 4 groups.

Outputs

A1, A2, A3, A4 = Bank A Output 1 through Output 4 **B1, B2, B3, B4** = Bank B Output 1 through Output 4 **C1, C2, C3, C4** = Bank C Output 1 through Output 4 **D1, D2, D3, D4** = Bank D Output 1 through Output 4

ATTENTION

Only one output ON per group, A, B, C, D.

If the Operator Interface makes a request and RESET occurs on the same cycle, RESET will take precedence.

Block properties

Four Selector Switch Display Labels	×
Title:	
Bank A Labels Descriptor 1. 3. 2. 4.	Bank C Labels Descriptor 1. 2. 4.
Bank B Labels	Bank D Labels Descriptor 1. 3.
2 4	2 4
OK	Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the FSS function Block parameters to the desired value or selection that matches your operating requirements. Table 29 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Title			Enter a Title for the block	24 characters
Bank x Labels	Descriptor		Enter a Descriptor for Bank x Labels	16 characters
X = A, B, C, or D	Bank x Label 1		Enter a label name for display 6 chara	
	Bank x Label 2		Enter a label name for display	6 characters
	Bank x Label 3		Enter a label name for display	6 characters
	Bank x Label 4		Enter a label name for display	6 characters

Figure 28 shows a FFS function block and its associated display.

ATTENTION

The Four Selector group display is directly associated with the Four Selector Function Block. Pressing O/I Keys F1 through F4 call up a dialog box that allows changes to the output selection for the associated block.

DIGITAL GROUP TITLE		O/I Keys	FSSnnn sss
SELECT MODE	AUTO F1	F1	ALTO A2 A3 A4 PRGRM
SELECT DIRECTION	RIGHT F2	F2	RIGHT B1 LEFT B2 UP B3 DOWN B4
SELECT SPEED	FAST F3	F3	C1 OFF C2 SLOW C3 MEDIUM C4 FAST
SELECT OPERATOR	HARRY F4	F4	TOM D1 DICK D2 HARRY D3
			OTHER D4

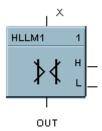
Figure 28 FSS function block example

FSYS Function Block

Description

The **Fast Logic Status Block (FSYS)** is a function block and is part of the *Fast Logic* category. It provides read access to controller status values including those related to the Fast Logic execution cycle. The output may be connected to function block inputs. The outputs may also be connected to signal tags for operator interface monitoring. The FSYS System Monitoring block is assigned block number 250. It looks like this graphically on the Control Builder:

Table 30 describes the outputs for the Fast Logic system status block.


Table 30	Fast logic system status block outputs
----------	--

Output	Description
NEWSTART	Newstart is ON for one full scan cycle of Fast Logic control block execution, following a cold start of the controller. For example: starting after a change from program to run.
RESTART	Restart is ON for one full scan cycle of Fast Logic control block execution, following the warm start of the controller.
ALM ACTIV	Alarm Active is ON if any operator panel alarm is ON.
ALMUNACK	Alarm unacknowledge is ON if any operator panel's alarm is unacknowledged.
HWOK	Hardware OK is ON if there are no faults.
LOWBTRY	Low Battery is ON if the battery is low, Off when battery is good.
HI TEMP	High CJ Temperature is ON if the CJ temperature is high.
MSTR FAIL	Communications Failure is ON when Modbus master diagnostic is not good
BAD BLOCK	Bad Block is ON when one or more blocks are not operating properly.
OFF LINE	Off Line is ON when the controller mode switch is in the Off Line mode.

HLLM Function Block

Description

The HLLM label stands for **High Low** limiter. This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder:

Function

Provide high-low limit for an analog (X) value.

Turns ON H or L digital output if input exceeds or falls below set limits.

- If X < or = Low Limit value, then: **OUT = LoLIM; L = ON; H = OFF.**
- If X > or = High Limit value, then: **OUT = HiLlM; L = OFF; H= ON.**
- If X > Low Limit value and < high Limit value, then: **OUT = X; L = OFF; H = OFF.**

Input

 $\mathbf{X} = Analog Value$

Output

OUT = Analog value within limits

 $\mathbf{L} =$ Low Limit digital indication

H= High Limit digital indication

Block properties

High-Low Limit Prop	erties	×
- Block Numl Or	ber 1 der 1	OK Cancel
Set Limits		
High Limit	0	
Low Limit	0	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the HLLM function Block parameters to the desired value or selection that matches your operating requirements. Table 31 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	# Parameter Description Value or Sele		
Set Limits	its High Limit 0		High limit value for analog (X) value	-99999 to 999999	
	Low Limit	1	Low limit value for analog (X) value	-99999 to 999999	

Table 31 High low limit configuration parameters

Example

Figure 29 shows a Function Block Diagram using an HLLM function block to provide a remote setpoint signal within specified limits to a PID Control Loop.

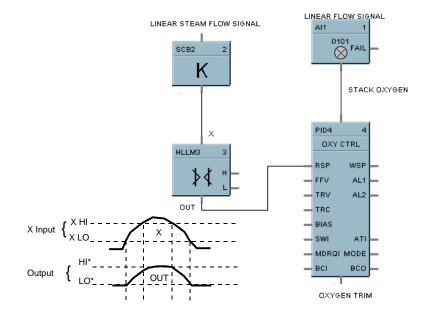
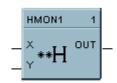



Figure 29 HLLM function block example

HMON Function Block

Description

The **HMON** label stands for **High Monitor**. This block is part of the *Alarm/Monitor* category. It looks like this graphically on the Control Builder.

Function

Monitors two analog input values (X and Y) and turns ON a digital output if X exceeds Y. A hysteresis adjustment is provided to prevent output cycling.

- If X > Y, then **OUT = ON**.
- If X < or = (Y Hysteresis), then **OUT = OFF.**
- If (Y Hysteresis) < X < Y, then **OUT = Previous State.**

Input

 $\mathbf{X} = Analog value.$

 $\mathbf{Y} = Analog value$

Output

OUT = Digital signal

Block properties

High-Low Monitor Properties	×
Block Number 1 Order 1	Cancel
Set Properties Hysteresis 0	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

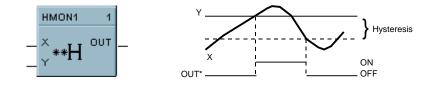

You must configure the HMON function Block parameters to the desired value or selection that matches your operating requirements. Table 32 describes the parameters and the value or selection.

Table 32 High monitor function block configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Properties	Hysteresis	0	An adjustable overlap of the On/Off states of the output.	0 to the Span of Y input in Engineering units.

Example

Figure 30 shows a Function Block Diagram using an HMON function block. It shows a typical output signal response provided by an HMON function block.

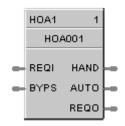


Figure 30 HMON function block example

HOA Function Block

Description

The **HOA** label stands for **Hand/Off/Auto Switch.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

The Hand – Off – Auto (HOA) switch function block permits state change requests from a Local Operator Interface or a Remote source. The block states are: BYPASS (external manual operation of a device), HAND (manual operation from an operator interface), AUTO (default – requests are operated automatically), or OFF (relay to be switched to Bypass, Hand, or Auto)

The HOA switch is also used with the Device Control (DC) function block to comprise a Pump Control algorithm which is used to manipulate the state of a controlled device (pump).

Each configuration is limited to a maximum of 16 HOA function blocks. Forcing of outputs is NOT permitted within this block.

Input

REQI = If the current state of the block is AUTO, then REQO output (on/off) equals the REQI input (on/off)

BYPS = If ON, the REQO output is forced off and any state change requests are ignored. If OFF, the block returns to its previous state (Hand, Off, Auto)

Output

HAND = ON when the block is in the HAND state, else OFF. Device is in manual operation from an operator interface; prevents automatic operation; this state forces the REQO output ON.

AUTO = On when block is in AUTO state, else OFF. Requests are operated automatically.

REQO = This is ON when in the HAND state, or when in the AUTO state and the REQI input signal is ON. OFF when in the OFF or BYPASS state.

Note. Both HAND and AUTO are OFF in the OFF and BYPASS states.

Block properties

The **HAND/OFF/AUTO** properties dialog box is divided into two tab cards:

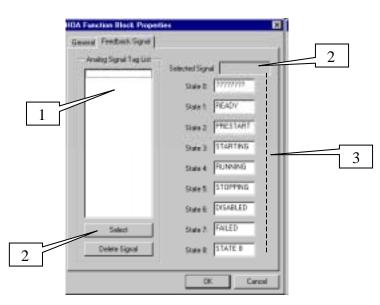
GENERAL FEEDBACK SIGNAL

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 33 describes the parameters and the value or selection.

Displays Tag Name	H04001			
Decemptor	(9	
Sellingi	110000-001			
	HOA Source	Bath	-	
	Initial State	4.40	-	


Table 33 HOA general tab parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Display	Tag Name	N/A	8-character tag name	
	Descriptor	N/A	Block description	
Settings	HOA Source	N/A	Determines which devices	Local (Local Operator Interface)
			have permission to write Hand-Off-Auto state change	Remote (Serial Communications)
			requests	Local/Remote
				Default = Local/Remote
	Initial State	N/A	Start-up state of the function block.OFFUser can change the currentHAND	OFF
				HAND
			state from the operator interface if the HOA Source	AUTO
			is Local or Both	

FEEDBACK SIGNAL tab

It looks like this graphically on the Control Builder. Table 34 describes the parameters and the value or selection. The feedback signal is used for display purposes.

When the HOA block is used in conjunction with a Device Control (DC) block, the feedback is typically referenced to the (STI) status output pin of the DC block. The sample text shown in Table 34 would correspond to the states of the DC block.

To select a Feedback signal and to define state text for the enumerated value of the feedback signal, proceed with the sequence 1 through 3 below.

Table 34 HOA feedback signal tab parameters

Sequence Number	Parameter Field	Action	Selections	Comments
1	Analog Signal Tag List STI GUT HOA, FOBK DC_STI	Click on a signal tag in the list	Select from all configured Analog Signal tags listed	

Sequence Number	Parameter Field	Action	Sele	ctions	Comments
2	Select Delete Signal	Click "Select" at the bottom of the "Analog Signal Tag List" to place highlighted signal tag into the "Selected Signal" field			The selection is placed in the Selected Signal field on the dialog box. Click on "Delete Signal" at the bottom of the "Analog Signal Tag List" to remove a signal tag from field.
3	State 0. 77777777 State 1. 10220 State 2. STARTING State 3. RUNNING State 4. STOPPING State 5. DISABLED State 9. FALED State 9. STATE 7 State 9. STATE 8	The state text will be selected for the display based on the numerical value (0 through 8) of the specified analog signal.	Default Text ???????? READY PRESTART STARTING RUNNING STOPPING FAILED DISABLED STATE 8	Enumerated value of selected signal 0 1 2 3 4 5 6 7 8	You can highlight any state and change the text to whatever you desire for that state. ??????? = Block not used

Figure 32 shows a Function Block Diagram using an HOA function block in conjunction with a Device Control (DC) block and an external HOA switch for pump control. The level signal input and Compare (CMPR) function are used to determine pump On/Off demand.

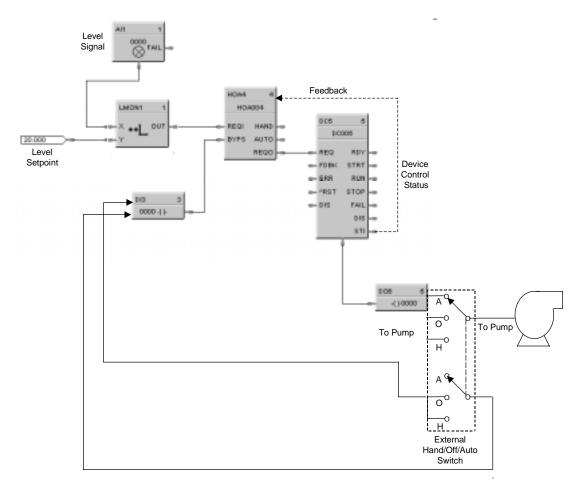
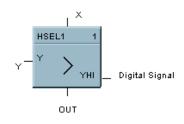



Figure 31 HOA function block example

HSEL Function Block

Description

The **HSEL** label stands for **High Selector.** This block is part of the *Signal Selectors* category. It looks like this graphically on the Control Builder.

Function

Selects higher of two analog input values (X and Y) for output. Indicates when Y is higher than X.

- If X > or = Y, then: **OUT = X; YHI = OFF.**
- If X < Y, then: **OUT = Y; YHI = ON.**

Input

 $\mathbf{X} = Analog value$

 $\mathbf{Y} = Analog value$

Output

OUT = Higher analog value **YHI** = Digital signal. (ON when Y>X.)

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

AI2 O101 FAIL HSEL3 Y HIGH SEL] YHI is ON if Y is greater than X

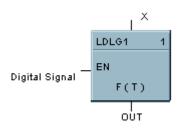

Figure 32 shows a Function Block Diagram using an HSEL function block to monitor two analog inputs to activate an alarm signal tag.

Figure 32 HSEL Function Block Example

LDLG Function Block

Description

The **LDLG** label stands for **Lead/Lag.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Modifies an analog input value (X) to include LEAD (T2) and LAG (T1) time constants of from 0 to 99 minutes, when a digital input (EN) is ON.

• If EN = ON, then:

$$OUT = \frac{1 + sT2}{1 + sT1} \times X$$

 $s = Laplace \ operator$

If T1 = 0, then:

$$OUT = last X + \frac{T2}{t} (X - last X)$$

last X = *Input value from execution cycle.*

= Duration of previous cycle time in minutes.

If T2 = 0, then the block functions as a digital lag filter.

• If EN = OFF, or initial start, then: **OUT = X.**

Inputs

X = Analog value (Primary Input)

t

EN = Digital signal (Enable)

Output

OUT = Analog value as modified

Block properties

Lead Lag Properties	×
Block Number 2 Order 2	OK Cancel
Time Constants Lag Time (min) 0 Lead Time (min) 0	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the LDLG function Block parameters to the desired value or selection that matches your operating requirements. Table 35 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Time Constants	Lag Time (min)	0	T1 - Lag Time Constant	0.00 to 99.00 minutes
Lead Time 1 (min)		T2 - Lead Time Constant NOTE: If T2 is set to 0, function becomes a lag filter.	0.00 to 99.00 minutes	

Table 35 Lead lag configuration parameters

Figure 33 shows a Function Block Diagram using an LDLG function block to modify the PV signal for the remote setpoint input of the PID control loop.

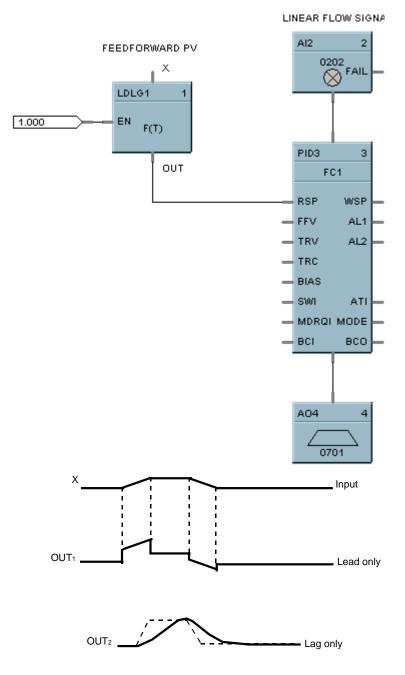


Figure 33 LDLG function block example

LMON Function Block

Description

The **LMON** label stands for **Low Monitor**. This block is part of the *Alarm/Monitor* category. It looks like this graphically on the Control Builder.

Function

Monitors two analog input values (X and Y), and turns ON a digital output if X is less than Y. A hysteresis adjustment is provided to prevent output cycling.

- If X < Y, then: **OUT = ON.**
- If X > or = (Y + Hysteresis), then: **OUT = OFF.**
- If (Y + Hysteresis) > X > Y, then: **OUT = Previous State.**

Input

 $\mathbf{X} =$ Analog value.

 $\mathbf{Y} = Analog value$

Output

OUT = Digital signal

Block properties

High-Low Monitor Properties	×
Block Number 1 Order 1	Cancel
Set Properties Hysteresis	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the LMON function Block parameters to the desired value or selection that matches your operating requirements. Table 36 describes the parameters and the value or selection.

Table 36 Low monitor function block configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Properties	Hysteresis	0	An adjustable overlap of the On/Off states of the output.	0 to the Span of Y input in Engineering units.

Example

Figure 34 shows a Function Block Diagram using an LMON function block. It shows a typical output response provided by a LMON function block.

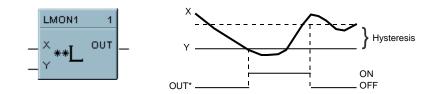
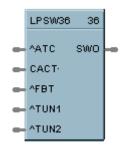



Figure 34 LMON function block example

LPSW Function Block

Description

The **LPSW** label stands for **Loop Switch.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Digital interface to control loops to initiate autotuning, change control action, force bumpless transfer, select tuning set. Connects to a PID, TPSC, or CARB function blocks.

Inputs

^ATC = Autotune Command (OFF to ON initiates Autotuning)**

CACT = Change Control Action (ON changes Control Action)

^FBT = Force Bumpless Transfer (OFF to ON Forces Bumpless Transfer)**

^TUN1 = Tune Set 1 (OFF to ON switches to Tune Set 1*)**

^TUN2 = Tune Set 2 (OFF to ON switches to Tune Set 2)**

* Switch to Tune Set 1 overrides concurrent command to switch to Tune Set 2

** Not available for ON/OFF function Block

Output

SWO = The output of this block must connect to the SW1 input of a PID, CARB, and TPSC function block.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 35 shows a Function Block Diagram using an LPSW function block

Function: Digital interface to initiate:

- Autotuning
- Change Control Action: Direct/Reverse Action
- Force Bumpless Transfer (rebalance the algorithm)
- Select Tuning Set #1
- Select Tuning Set #2

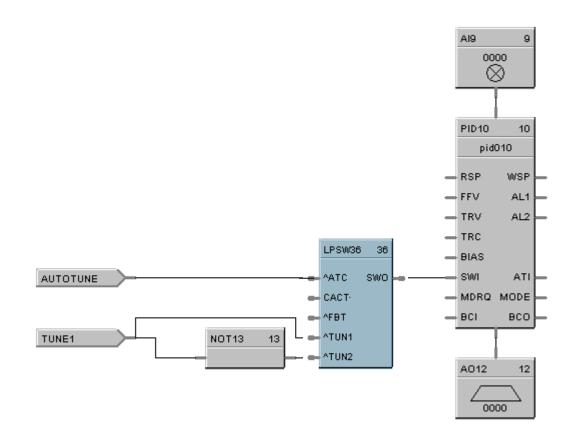
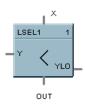



Figure 35 LPSW function block example

LSEL Function Block

Description

The **LSEL** label stands for **Low Selector.** This block is part of the *Signal Selectors* category. It looks like this graphically on the Control Builder.

Function

Selects lower of two analog input values (X & Y) for output. Indicates when Y is lower than X.

- If X < or = Y, then: **OUT = X; YLO = OFF.**
- If X > Y, then: **OUT = Y; YLO = ON.**

Input

 $\mathbf{X} =$ Analog value

 $\mathbf{Y} = Analog value$

Output

OUT = Lower analog value **YLO** = Digital signal (ON when Y<X)

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 36 shows a Function Block Diagram using an LSEL function block to monitor two analog inputs to activate an alarm signal tag.

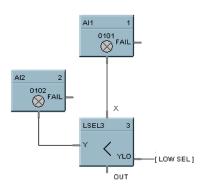
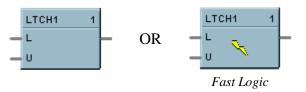



Figure 36 LSEL function block example

LTCH Function Block

Description

The **LTCH** label stands for **Latch**. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Latches output (OUT) ON when latch input (L) turns ON and maintain latched output until unlatch input (U) turns ON. Note that latch input must be OFF for unlatch input to work.

- If U = ON, then: OUT = OFF.
- If L = ON, then: OUT = ON.
- Else, **OUT = Previous State.**

Input

 $\mathbf{L} =$ Latch Command Digital signal.

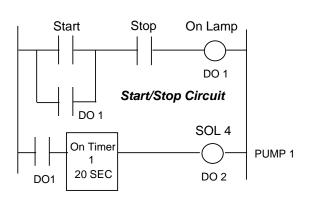
 $\mathbf{U} =$ Unlatch Command Digital signal.

Output

OUT = Digital signal

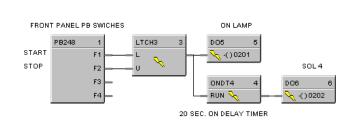
Block properties

Double click on the function block to access the function block properties dialog box.


Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 37 shows a Function Block Diagram using an LTCH function block.


PLC Ladder Logic

An ON Delay timer is added to a basic Start/Stop circuit which activates the ON Lamp. In ladder logic, the DO1 contact status is used to activate the timer and latch in the start pushbutton action. After 20 sec., SOL4 (DO2) is turned ON which is held as long as DO1 is ON.

UMC 800 Logic

The Start/Stop latch circuit is used since no external confirmation is needed. In this example, the Operator Panel pushbutton switches (F1 and F2) are used to substitute for panel switches. The Push Button function block is used to assign Start to F1 and Stop to F2. The latch output turns on the ON Lamp and starts the timer. After 20 sec., Solenoid 4 is activated. Note: the ON and OFF Delay timers are reset after timeout or if the logic state to the input goes to logic 0 (or low).

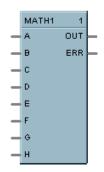

5 Function Blocks

Figure 37 LTCH function block example

MATH Function Block

Description

The **MATH** label stands for **Free Form Math.** This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Read inputs A through H and calculates the output based on specified general purpose calculation. OUT is calculated from an equation entered here.

• Offers the following general purpose calculation functions:

– abs	=	addition,
-------	---	-----------

- EXP = exponential (\ln^{-1}) ,
- Ln = natural log (log base e),
- Log 10 = log base 10,
- neg (Unary) = negation,
- sqrt = Square Root,
- -+ = addition,
- – subtraction,
- * = multiplication,
- -/ = division,
- ^ = raised to power of (x^y)
- (= left parenthesis,
-) = right parenthesis, and
- A maximum of either 50 tokens (note 1) per equation or 100 characters per line is allowed, whichever is first exceeded.

ATTENTION

A token is an operation, variable, or pair of parenthesis; the end of an equation counts as one token.

Inputs

- IN A block input 1
- **IN B** block input 2
- **IN C** block input 3
- **IN D** block input 4
- **IN E** block input 5
- **IN F** block input 6
- **IN G** block input 7
- **IN H** block input 8

Output

ERR = ON if block detects an error on any of the following operations:

- division by 0
- fractional root of a negative number (for example: -2**0.5)
- zero to the zero power
- LOG10 or LN of a negative number or 0
- result of x^y is greater than 1.7E + 308.
- result of EXP (x) is greater than 3.4E + 308 or less than 3.4E 308.

ATTENTION

- For the above rules, groups of constants will be combined and treated as one constant.
- Any number less than or equal to 3.4E -308 is considered 0.

OUT = Calculated Output

ATTENTION

- · Use only the following words and characters in equations
 - +; -; *; /: ^; EXP; LOG10; Ln; Negative (Unary minus);
 - ' ' Blank space (ignored)
 - 'a'..'h' Variables (operand) either a constant or tag
 - (), [], { } Parentheses 3 types
- A left parenthesis must have a matching right parenthesis.
- The matching parenthesis must be the same type e.g., (), [], or { }.
- Parentheses may be nested to any depth.
- Infix operators: +, -, *, /, ^ must have a left and right operand.
- If the '-' operator only has a right operand, it is interpreted as the Unary minus.
- Function operators: EXP, LOG10, Ln must have an operand to the right, and the operand must be enclosed in parentheses.
 Example: EXP(A), LOG10(b), LN(c).

Block properties

Free Form M	lath			×
Block	Number 1		Order 1	
0UT =				
Errors:				Functions: abs exp in log operators: + (Add) + (Add) + (Subtract) * (Multiply) / (Divide) + (Power)
	Ĺ	OK)	Cancel	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the MATH function Block parameters to the desired value or selection that matches your operating requirements. Table 37 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Equations	Equation Field	N/A	OUT= [equation]	Enter the desired equation in this field
Functions	Math Functions	N/A	abs, exp, In, log, neg, sqrt	Double Click on a function to select from the list box
Operators	Math Operations	N/A	+ (add) - (subtract) * (multiply) / (divide) ^ (power)	Double Click on an operation from the list box
Errors	Error list	N/A	List of equation errors	

Figure 38 shows a Function Block Diagram using a MATH function block to determine a general-purpose calculation output.

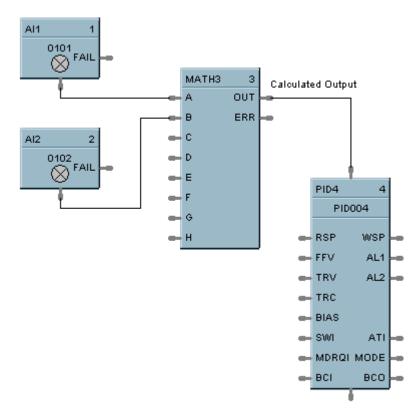


Figure 38 MATH function block example

MBR Function Block

Description

The **MBR** label stands for **Modbus Read.** This block is part of the *Communications* category. It looks like this graphically on the Control Builder.

ADDR MBR1 RD1 RD2 RD3 RD4 RD5 RD6 RD7 RD8 RD9 RD10 **RD11** RD12 RD13 RD14 RD15 RD16

Function

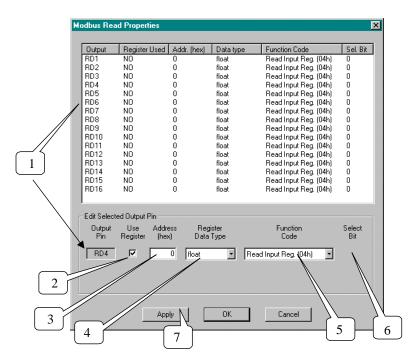
A communication function block that expands the read capability of the Modbus Slave function block to 16 additional data points. Multiple blocks may be connected to the same Modbus Slave block.

The Modbus read block has no inputs and 16 outputs. Up to 16 registers can be configured as the source of data for the outputs.

The configuration data for each point will consist of:

- the address of the source device on the Modbus link,
- the register address of the desired data,
- and the register type: Integer, Float, or Bit Packed.

The sixteen outputs can be connected or tagged in the same manner as any other function block output.


Inputs

ADDR = Slave address from associated MBS block. (Must be connected to a MBS block)

Outputs

RD1 through RD16 - Last read value from selected address

Block properties

Double click on the function block to access the function block properties dialog box.

Configuration parameters

You must configure the MBR function Block Output Pins as shown in the "Edit Selected Output Pin" portion of the dialog box. Follow the numbered sequence shown above referring to Table 38.

Sequence Number	Parameter Field	Action	Selections	Comments
1	Output Pin RD1	Click on an Output Pin from the list of pins in the upper portion of the dialog box.	RD1 through RD16	The selected Output Pin will appear in the Output Pin Field.
2	Use Register	Click on the "Use Register" field to assign a register to the Output pin.	RD1 through RD16	YES will be indicated in the "Register used" column when you select "Apply
3	Address (hex)	Type in the address of the register (in Hex) on the slave device		

Table 38 MBR function block configuration parameters	Table 38	MBR function block confi	guration parameters
--	----------	--------------------------	---------------------

Sequence Number	Parameter Field	Action	Selections	Comments		
4	Register Data Type float unsigned 32 signed 32 unsigned 32 unsigned 16 signed 16 bit packed	From the drop down menu, select the Register Data Type	 Float Unsigned 32 Signed 32 Unsigned 16 Signed 16 Bit Packed Single Bit 	If read as an integer, the output is converted to a floating point.		
5	Function Code Read Holding Reg. (03h) Read Holding Reg. (03h) Read Input Reg. (04h)	Select a function code for "Float, Unsigned, Signed, or Bit Packed" register data type	 Read Holding Reg – Function Code 03 Read Input Registers – Function Code 04 	Function code 03 or Function code 04 is used to read the contents of input registers in the slave.		
	Function Code Read Coil Status (01h) Read Input Status (02h)	Select a function code for " Single Bit " Register data type.	 Read Coil Status – Function Code 01 Read Input Status – Function Code 02 	Function code 01 is used to read a slave's coil's (discrete output's) ON/OFF status of the slave device in a binary data format. Function code 02 is used to read a slave's input's (discrete input's) ON/OFF status of the slave device in a binary data format. Output is floating point equivalent (0.0 or 1.0). NOTE: Refer to the Communications manual for the function codes supported by the specific device.		
6	Select Bit	Select which bit (0-15) to read when Register Data Type = Bit Packed	0 to 15	If read as a bit packed number, you must select which bit to mask (0-15). The output will be the floating-point equivalent (0.0 or 1.0) of the masked bit.		
7	You must press [APPLY] to accept the register changes.					

Figure 39 shows a Function Block Diagram using Modbus function blocks.

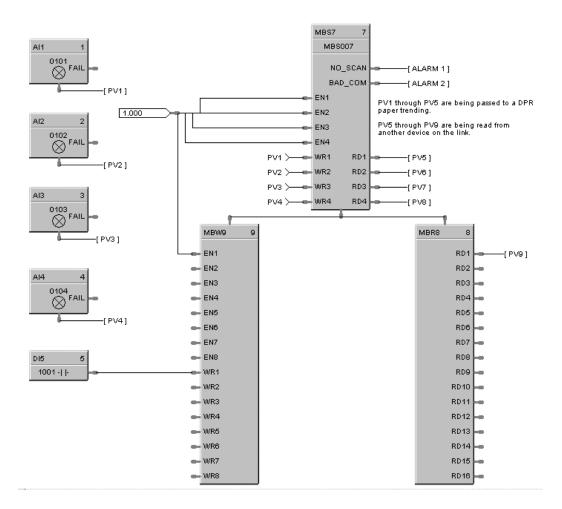
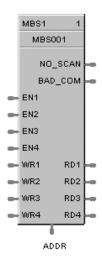



Figure 39 MBR function block example

MBS Function Block

Description

The **MBS** label stands for **Modbus Slave Status.** This block is part of the *Communications* category. It looks like this graphically on the Control Builder.

Function

A communication function block that is internally assigned to optional Communication Port B that allows the controller to act as a master device and communicate with slave devices using the Modbus protocol. Requires one block per slave device, up to 16 devices maximum. Only one block may be assigned to each slave device. It supports 4 read and 4 write parameters plus provides digital indication of communication integrity.

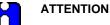
Inputs

EN1 through EN4 = [ON] Data value written once per scan

WR1 through WR4 = Values to be written to the selected register

ATTENTION

- This block does not support bit packing and single bit writing.
- If the register is an integer data type, the floating point input will be rounded up prior to writing to the address register.
- Message Broadcasting is not supported on the UMC800.


Outputs

RD1 through RD4 = Last read value from the selected address

NO_SCAN = Scan Indication ON = Device is "Out of Scan" OFF = Device is "In Scan". **BAD_COM** = Communications Indication

ON = Bad quality or device not defined OFF = Good Communications

ADDR = Slave Address for use with MBR and MBW function blocks

- Integer values are converted to floating point values prior to output.
- If a Modbus slave device does not respond to a request, the last output value will be maintained.

Block properties

Double click on the function block to access the function block properties dialog box.

Configuration parameters

The ON/OFF properties dialog box is divided into Three tab cards:

GENERAL READ WRITE

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 39 describes the parameters and the value or selection.

Modbus Slave Function Block Properties	×
General Read Write	
Configure Modbus Slave Slave Tag Name M655001 Modbus Address 255 💂	
	OK Cancel

Table 39 MBS Block General tab configuration parameters	Table 39	MBS Block	General tab	configuration	parameters
---	----------	-----------	-------------	---------------	------------

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Configure Modbus	Slave Tag	1	Description of Slave Device	8-character tag name
Slave	Name			Slave address and Tag Name must be unique within a control file.
	Modbus Address	2	Address of Slave device on the Modbus link	Enter unique address between 1 and 247
				Default MB address = 255 which means slave will NOT be in scan

READ tab

It looks like this graphically on the Control Builder. Table 40 describes the parameters and the value or selection.

Mod	ibus Slave	Function	Block Pr	operties			×
G	eneral Rea	d Write	1				
Г	- Edit Output	Pins					
	Output Pin	Use Register	Address (hex)	Register Data Type		Function Code	Select Bit
	RD1		0	float	Ψ.	Read Holding Reg. (03h) 💌	
	RD2		0	float	-	Read Holding Reg. (03h) 💌	
	RD3		0	float	Ŧ	Read Holding Reg. (03h) 💌	
	RD4		0	float	-	Read Holding Reg. (03h) 💌	
						ОК	Cancel
							Lancei

Table 40 MBS Block Read tab configuration parameters

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Edit Output Pins	Output Pin	1	Output pin designation	Register request assigned to RD1, RD2, RD3, or RD4 pin
	Use Register	2	Register Request	Click on the "Use Register" field to assign a register to the Output pin.
	Address (hex)		Register Address	Type in the address of the Read register (in Hex) on the slave device NOTE: A single configuration may contain up to 256 enabled registers.
	Register Data Type		Register data type	From the drop down menu, select the Register Data Type
				Float
				Unsigned 32
				Signed 32
				Unsigned 16
				Signed 16
				Bit Packed
				Single Bit
				If read as an integer, output is converted to floating point equivalent.

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
	Function Code		Several standard Modbus RTU function codes are supported. These standard function codes provide basic support for IEEE 32-bit floating point numbers and 16-bit integer register representation of instrument's process data	Function code 03 – Read Holding Registers or Function code 04 – Read Input Registers is used to read the contents of input registers in the slave. Supported Data Types for Function Codes 03 and 04. From the drop down menu, select a function code for "Float, Unsigned, Signed, or Bit Packed" register data type Function code 01 – Read Coil Status is used to read the coil's (discrete output's) ON/OFF status of the slave device in a binary data format. Function code 02 – Read Input Status is used to read the input's (discrete input's) ON/OFF status of the slave device in a binary data format. Supported Data Types for Function Codes 01 and 02. Select a function code for "Single Bit" Register data type. NOTE: Refer to the Communications manual for the function codes supported by the specific device.
	Select Bit	23-26	Bit to read when Read register's data type = Bit Packed You must then select which bit to mask (0-15). The output will be the floating-point equivalent (0.0 or 1.0) of the masked bit.	0-15

Write tab

It looks like this graphically on the Control Builder. Table 41 describes the parameters and the value or selection.

Modbus Slave	Function Block Pr	operties		×
General Read	H Write			
Edit Input Pi	ins			
Input Pin	Use Address Register (hex)	Register Data Type	Function Code	
WB1		float	Preset Multiple Reg. (10h)	
WR2		float	Preset Multiple Reg. (10h)	
WR3		float	Preset Multiple Reg. (10h)]
WB4		float	Preset Multiple Reg. (10h)	
			OK	Cancel

Table 41 MBS Block Write tab configuration parameters

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Edit Input Pins	Input Pin		Input pin designation	Register request assigned to WR1,WR2,WR3, or WR4 pin
	Use Register		Register Request	Click on the "Use Register" field to assign a register to the Input pin.
	Address (hex)		Register Address	Type in the address of the Write register (in Hex) on the slave device
	Register Data Type		Register data type	From the drop down menu, select the Register Data Type
				FloatUnsigned 32
				-
				Signed 32
				Unsigned 16
				Signed 16

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
	Function Code		Several standard Modbus RTU function codes are supported. These standard function codes provide basic support for IEEE 32-bit floating point numbers and 16-bit integer register representation of instrument's process data Preset Single Registers – Function Code 06 Preset Multiple Registers – Function Code 10 hex	The function code for "Unsigned 16 or Signed 16," register data type is 06 – Preset Single Registers* presets integer value into a single register The function code for "Float, Unsigned 32 or Signed 32," register data type is 10 hex – Preset Multiple Registers* presets values into holding registers. *automatically selected when you select "Register Data Type"
				NOTE: Refer to the Communications manual for the function codes supported by the specific device.

Example

Figure 40 shows a Function Block Diagram using an Modbus function blocks.

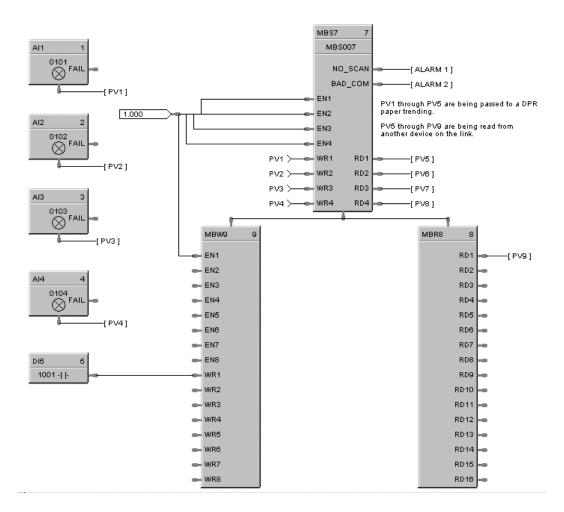


Figure 40 MBS function block example

MBW Function Block

Description

The **MBW** label stands for **Modbus Write.** This block is part of the *Communications* category. It looks like this graphically on the Control Builder.

ADDR MBW1 e- EN1 e- EN2 e- EN3 🕳 EN4 e- EN5 e- EN6 - EN7 - ENS 🕳 WR1 🕳 WR2 🕳 WR3 - WR4 🛶 WR5 wr6 - WR7 - WRS

Function

A communication function block that expands the write capability of the Modbus Slave function block to 8 additional data points. Multiple blocks may be connected to the same Modbus Slave block.

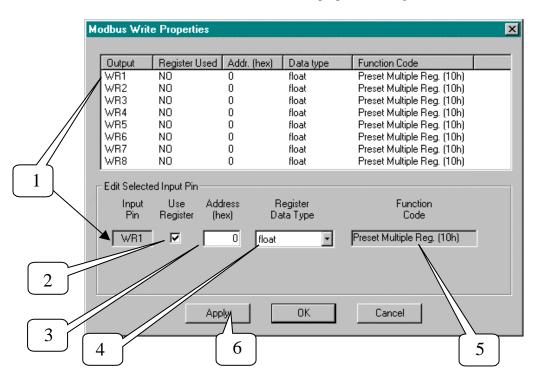
The Modbus write block has 8 inputs and no outputs. The Modbus destination for each of the eight inputs can be configured. An enable pin lets the data value be written once per scan.

The configuration data for each point will consist of : the address of the destination device on the Modbus link, the register address of the desired data, and the register type: Integer or Float.

Inputs

EN1 through EN8 = [ON] Data value is written once per scan

WR1 through WR8 = Value to be written to the selected register address.


ADDR = Slave address from associated MBS block. (Must be connected to MBS block)

Outputs

None

Block properties

Double click on the function block to access the function block properties dialog box.

Configuration parameters

You must configure the MBW function Block Input Pins as shown in the "Edit Selected Input Pin" portion of the dialog box. Follow the numbered sequence shown above referring to Table 42.

Sequence Number	Parameter Field	Action	Selections	Comments
1	Input Pin WR1	Click on an Input Pin from the list of pins in the upper portion of the dialog box. The selected Input Pin will appear in the "Input Pin" Field.	WR1 through WR8	
2	Use Register ☑	Click on the "Use Register" field to assign a register to the Input pin. YES will be indicated in the "Register Used" column when you select "Apply".	WR1 through WR8	

 Table 42 MBW function block configuration parameters

Sequence Number	Parameter Field	Action	Selections	Comments
3	Address (hex)	Type in the address of the register (in Hex) on the slave device		
4	Register Data Type float unsigned 32 signed 32 unsigned 16 signed 16	From the drop down menu, select the Register Data Type	 Float Unsigned 32 Signed 32 Unsigned 16 Signed 16 	Several standard Modbus RTU function codes are supported. These standard function codes provide basic support for IEEE 32-bit floating point numbers and 16-bit integer register representation of instrument's process data. (see Sequence Number 5 below)
5	Function Code Preset Single Reg. (06h) Function Code Preset Multiple Reg. (10h)	The function code for "Unsigned 16 or Signed 16 register data type is (06)* The function code for "Float, Unsigned 32 or Signed 32 register data type is (10 hex)* * automatically selected when you select "Register Data Type "	 Preset Single Registers – Function Code 06 Preset Multiple Registers – Function Code 10 hex 	Function code 06 presets integer value into a single register. Function Code 10 hex presets values into holding registers. NOTE: Refer to the Communications manual for the function codes supported by the specific device.
6	You must press [APPLY]	to accept the register change	l es.	1

Example

Figure 41 shows a Function Block Diagram using an Modbus function blocks.

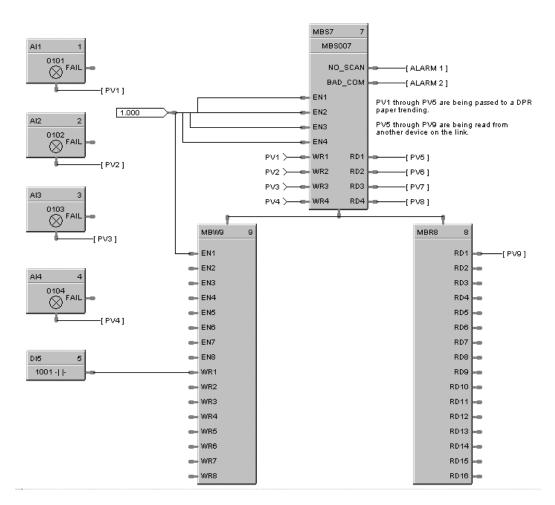
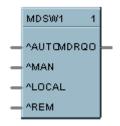



Figure 41 MBW function block example

MDSW Function Block

Description

The **MDSW** label stands for **Mode Switch.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Digital interface to control loops to select automatic or manual modes and/or local or remote setpoint. Connects to PID, ON/OFF, CARB, or TPSC mode block input.

Inputs

AUTO = Automatic Output mode (OFF to ON* sets MDRQO to Automatic control mode)

MAN = Manual Output mode (OFF to ON* sets MDRQO to Manual control mode)

LOCAL = Local Setpoint mode (OFF to ON* sets MDRQO to Local Setpoint mode)

REM = Remote Setpoint mode (OFF to ON* sets MDRQO to Remote Setpoint mode)

* for one control cycle

Output

MDRQO (**Mode Request Output**) = The output of this block must connect to the MDRQI input of a PID, CARB, TPSC, or ON/OFF function block.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 42 shows a Function Block Diagram using an MDSW function block.

Application: External mode switching of the PID Block - changing a loop to MAN, to AUTO, to LOCAL SP, or REMOTE SP.

ATTENTION

Mode switching is also provided as an integral part of the Operator Panel, Loop Displays.

The MDSW (Mode Switch) Function Block is used exclusively with the MDRQI (Mode Request Input) of the PID, ON/OFF, CARB< or TPSC Function Block. Its output provides encoded switch commands to the PID Block.

All inputs are OFF to ON edge-triggered, requiring a separate input for each action. The example shows digital inputs as the transfer inputs but any digital status could be used.

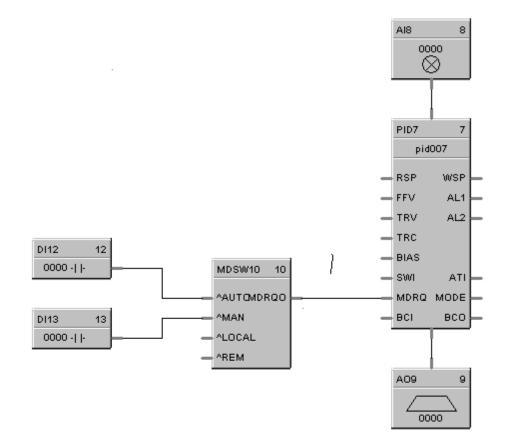
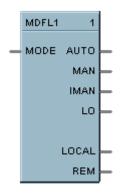



Figure 42 MDSW function block example

MDFL Function Block

Description

The **MDFL** label stands for **Mode Flag.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Turns ON the output that corresponds to the current value of MODE.

Turns OFF all other outputs.

Input

The MODE input must connect to the MODE output of a PID, CARB, TPSC, or ONOFF function block.

Output

$\mathbf{REM} = \mathbf{ON}$	If MODE = Remote Setpoint
LOCAL = ON	If MODE = Local Setpoint
AUTO = ON	If MODE = Automatic Control
MAN = ON	If MODE = Manual Control
IMAN = ON	If MODE = Loop in Initialization Manual
LO = ON	If MODE = Local Override

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 43 shows a Function Block Diagram using an MDFL function block. The mode output of the PID Block is used exclusively with the MDFL (Mode Flags) Block.

Any of the status outputs may be referenced by a Signal Tag or may be transferred externally using a DO.

The output shown is ON when in Manual and OFF when in Automatic.

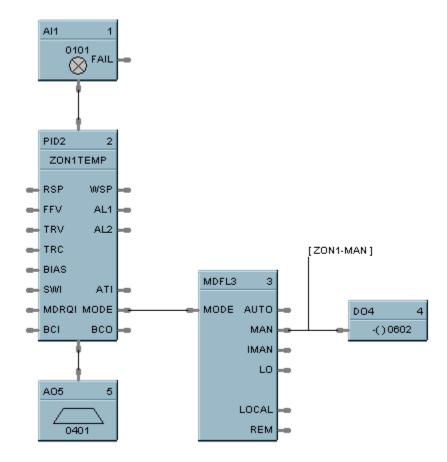


Figure 43 MDFL function block example

MMA Function Block

Description

The **MMA** label stands for **Min-Max-Average-Sum.** This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

	MMA1	1	
_	X1	MIN	_
_	X2	мах	_
_	хз	AVG	_
_	X4	SUM	_
_	X5	SDEV	_
_	X6	ALM	_

Function

Accepts inputs from up to six analog input values (X1 - X6) and calculates these values for output:

- MIN Minimum input value
- MAX Maximum input value
- AVG Average of the 6 input values
- SUM Sum of the 6 input values
- DEV Standard deviation of the 6 input values
- ALM Alarm output for deviations

Turns ON ALM when any input is outside the configured number of standard deviations when the configuration parameter DEV > 0.

- If DEV configured = 0, then:
 - no standard deviation is calculated;
 - all inputs connected to the block are used to calculate the MIN, MAX, AVG, AND SUM outputs.
- If DEV configured 0, then:
 - the standard deviation is calculated for the number of inputs connected to the block, and
 - all inputs connected to the block are used to calculate the MIN, MAX, AVG, and SUM outputs.
- If DEV configured > 0, then:
 - the standard deviation is calculated for the number of inputs connected to the block, and SDEV = result;
 - any inputs that deviate more than the configured number (DEV) of standard deviations from the average are not used to calculate the MIN, MAX, AVG, and SUM outputs;
 - if any input deviates more than the configured number (DEV) of standard deviations, ALM turns ON;

- if all inputs deviate more than the configured number (DEV) of standard deviations, then the MIN, MAX, AVG, and SUM outputs all equal zero (0), and ALM turns ON.

and and Deviation (SDEV) =
$$\sqrt{\begin{array}{c} i = n \\ \Sigma \\ i = 1 \\ n \end{array}} (X_i - \overline{X})^2$$

• Standard Deviation (SDEV)

X = AVG

where:

n = the number of connected inputs.

Input

X1 = First analog value.

 $\mathbf{X2} = \mathbf{Second}$ analog value.

- **X3** = Third analog value.
- X4 = Fourth analog value.
- $\mathbf{X5} = \mathbf{Fifth}$ analog value.

 $\mathbf{X6} = \mathbf{Sixth}$ analog value.

Output

- **MIN** = Calculated minimum analog value.
- **MAX** = Calculated maximum analog value.
- **AVG** = Calculated average of analog values.
- **SU** = Calculated sum of analog values.
- **SDEV** = Square root of Z divided by N, where Z = the sum of individual squared deviations from the average of the first n inputs.
- **ALM** = Digital signal for alarm indication.

Block properties

Min-Max-Avg-Sum Properties	×
Block Number 1 Order 1	OK Cancel
Set Parameters Inputs Standard Devi	Used 0 ations 0

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the MMA function Block parameters to the desired value or selection that matches your operating requirements. Table 43 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Calculation Parameters	Inputs Used	N/A	Number of inputs connected to block	1 to 6
			(Connect inputs in numerical order; that is, unused inputs from the bottom up - X6, X5, etc.) Unused inputs default to 0.	
	Standard Deviations	1	Number of standard deviations within which inputs are used for calculation	 -999999 to 99999 <0 No Standard Deviation =0 Standard Deviation with no alarm >0 Standard Deviation

 Table 43 Min/Max/Ave/Sum function block configuration parameters

Example

Figure 44 shows a Function Block Diagram using an MMA function block. In this application, control is determined by automatic selection of the lowest or highest sensor, such as a thermocouple. As shown the MMA block is configured for highest (MAX).

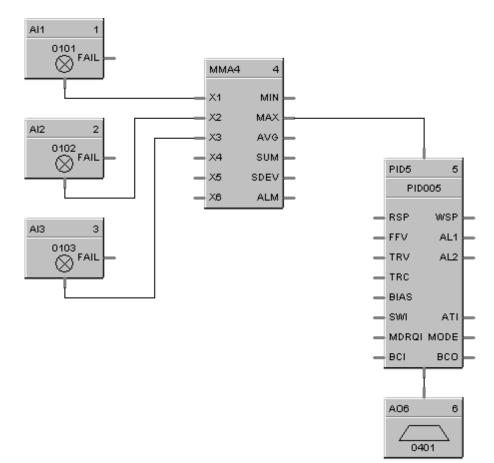
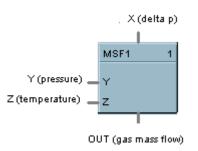



Figure 44 MMA function block example

MSF Function Block

Description

The **MSF** label stands for **Mass Flow Calculation.** This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Calculates gas mass flow (OUT) from differential pressure input value (X) that represents a pressure drop across an orifice plate (for example). It accepts two other inputs to include pressure (Y) and/or temperature (Z) compensation in the calculation. The calculation includes square root extraction.

• **OUT** = **Kq** * **sqrt** [(**dP** * **P**) / **T**]

Kq	=	Orifice Constant
dP	=	Differential pressure which
	=	(Kx * X) + Bx; where:
		Kx = Delta pressure scaled for desired engineering units X = Analog input value Bx = Delta pressure bias in desired engineering units
Р	=	Absolute gas pressure which
	=	(Ky * Y) + By; <i>where</i> :
		Ky = Pressure scaler for desired engineering units Y = Gas pressure analog input value By = Pressure bias in desired engineering units
Т	=	Absolute gas temperature which
	=	(Kz * Z) + Bz; where:
		Kz = Temperature scaler for desired engineering units Z = Gas temperature analog input value Bz = Temperature bias in desired engineering units
$If(Kz_*Z)$) + Bz =	= 0, then: OUT = 0

• If calculation is <= Dropoff, OUT = 0, else OUT = Calculation

Input

- $\mathbf{X} = \mathbf{Differential}$ pressure analog value.
- $\mathbf{Y} = \mathbf{Gas}$ pressure analog value.
- $\mathbf{Z} = \mathbf{Gas}$ Temperature analog value.

Output

OUT = Calculated analog value

Block properties

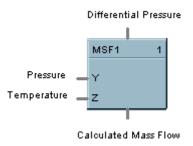
Mass Flow Properties Block Number 1 Order 1	ÖK Cancel	×
Calculation		
Calc = Kg * sqrt ((Kx * X + Bx) * If Calc > Low Cutoff then OU		- 010
Set Calculation Parameters		
Kg O	Bx 0	
Kx 0	Ву 0	
Ку 0	Bz 0	
Kz 0	Low Cutoff	
		1

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters


You must configure the MSF function Block parameters to the desired value or selection that matches your operating requirements. Table 44 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Calculation Parameters	к _q	0	Orifice constant	-999999 to 9999999
	К _Х	1	Delta pressure scaler	-99999 to 999999
	К _У	2	Pressure scaler	-99999 to 999999
	Kz	3	Temperature scaler	-99999 to 999999
	В _у	4	Pressure bias	-99999 to 999999(EU)
	B _X	5	Delta pressure bias	-99999 to 999999(EU)
	Bz	6	Temperature bias	–99999 to 999999(EU)
	Low Cutoff	7	Low Dropoff Value sets the output to zero when the calculation is below this limit.	0 to 99999 in Engineering Units

Table 44 Mass flow function block configuration parameters

Example

Figure 45 shows a MSF Function Block Diagram using inputs to calculate a mass flow output.

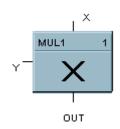


Figure 45 MSF function block example

MUL Function Block

Description

The **MUL** label stands for **Multiplication Mathematical operation (2 Inputs).** This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Multiplies one analog input value (X) by another (Y).

• OUT = X * Y

Input

 $\mathbf{X} =$ First analog value

Y = Second analog value

Output

OUT = Calculated analog value

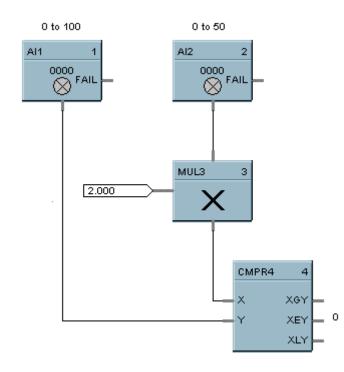
Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example



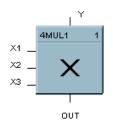

Figure 46 shows a Function Block Diagram using a MUL function block

Figure 46 MUL function block example

4MUL Function Block

Description

The **4MUL** label stands for **Multiplication Mathematical Operation (4Inputs)**. This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Multiplies four inputs to get an output.

Input

X1 = First analog value

 $\mathbf{X2} =$ Second analog value

 $\mathbf{X3}$ = Third Analog value

 $\mathbf{Y} =$ Fourth Analog value

ATTENTION

All four inputs must be connected. Unconnected inputs default to zero. If only three inputs are needed, the fourth should be connected to a constant value of 1.

Output

OUT = Calculated analog value

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 47 shows correct and incorrect example of a 4MUL function block. Note that all unused inputs must be connected to a constant value of one.

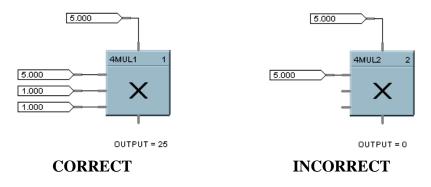


Figure 47 4MUL function block example

NEG Function Block

Description

The **NEG** label stands for **Negate**. This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Convert a value to the opposite sign; i.e., +5 IN = -5 OUT, -6 IN = +6 OUT. (Invert sign of an analog value.)

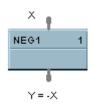
Input

 \mathbf{X} = positive or negative analog value

Output

Y = analog value of opposite sign from input

Block properties


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 48 shows a Function Block Diagram using a NEG function block.

Figure 48 NEG function block example

NOT Function Block

Description

The **NOT** label stands for the **NOT Boolean logic function or Logic Inverter**. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Reverse state of a digital input (X).

• OUT = Opposite state of X If X = ON, then: OUT = OFF. IF X = OFF, then: OUT = ON.

Input

 $\mathbf{X} = \mathbf{Digital \ signal}$

Output

OUT = Complement of input signal

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 49 shows a Function Block Diagram using a NOT function block. Use a single input to place a loop in manual when the input is ON (1) and return to Auto when OFF (0).

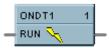
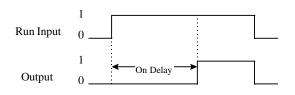


Figure 49 NOT function block example

ONDT Function Block

Description

The **ONDT** label stands for the **On Delay Timer**. This block is part of the *Fast Logic and Counters/Timers* categories. It looks like this graphically on the Control Builder.


Function

Provides an ON state logic output delayed by a user specified delay time after an OFF to ON transition of the RUN input.

An ON to OFF transition of the RUN input before the delay time has elapsed causes the timer to reset. Transitions from OFF to ON of the input are not delayed.

- If RUN is OFF, then OUT = OFF
- If previous RUN input is OFF and RUN is ON, then TIMER = DELAY, else if timer is not zero, then TIMER = TIMER -1.
- If RUN is ON and TIMER is 0, then OUT = ON (delay time has timed out).

Timing Diagram

Input

RUN = Logic Input

Output

OUT = Logic Output

Block properties

Delay Timer Properties	×
Block Number 1 Order	OK Cancel
Time Delay 0 sec. (####.#)	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the ONDT function Block parameters to the desired value or selection that matches your operating requirements. Table 45 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Time Delay	Time delay	0	Delay Time - specifies the amount of time the ON state logic output will occur after an OFF to ON transition of the RUN input.	0.1 sec, 0 to 9999.9 Enter as 0.1 to 99999 in 0.1 increments

Table 45 On delay timer function block example

Example

Figure 50 shows a Function Block Diagram using an ONDT function block.

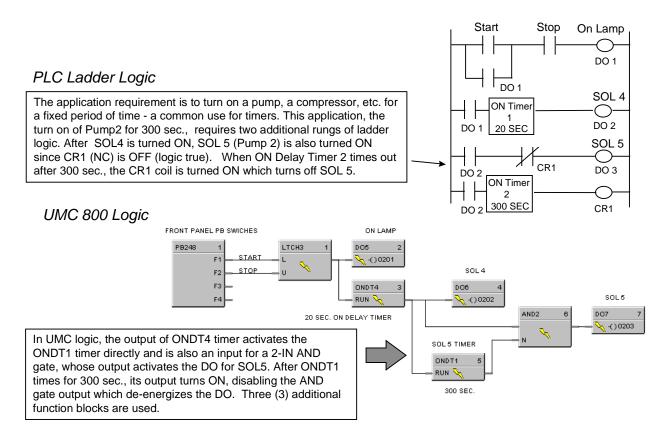
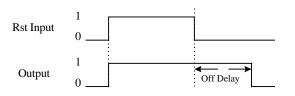


Figure 50 ONDT function block example

OFDT Function Block

Description

The **OFDT** label stands for the **Off Delay Timer**. This block is part of the *Fast Logic and Counters/Timers* categories. It looks like this graphically on the Control Builder.


Function

Provides an OFF state logic output delayed by a user specified delay time after an On to OFF transition of the RESET input.

An OFF to ON transition of the RESET input before the delay time has elapsed causes the timer to reset. Transitions from OFF to ON of the input are not delayed.

- IF RESET is ON, then OUT = ON.
- If previous RESET input is ON and RESET is OFF, then TIMER = DELAY.
- If RESET is OFF and TIMER is not 0, then time = TIMER 1.
- If RESET is OFF and TIMER is 0, then OUT = OFF (delay time is reset).

Timing Diagram

Input

RST = Logic Input

Output

OUT = Logic Output

Block properties

Delay Timer Properties	×
Block Number 1 Order	OK Cancel
Time Delay 0 sec. (####.#)	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the OFDT function Block parameters to the desired value or selection that matches your operating requirements. Table 46 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Time Delay	Time delay	0	Delay Time - specifies the amount of time the OFF state logic output will occur after an ON to OFF transition of the Reset input.	0.1 sec, 0 to 9999.9 Enter as 0.1 to 99999 in 0.1 increments

Table 46 Off delay timer configuration parameters

Example

Figure 51 shows a Function Block Diagram using an OFDT function block.

An OFF delay timer block output is ON as long as the RST input is logic HI (ON). It can be used for time duration but must be triggered by an ON to OFF transition on the Reset input. This can be accomplished using Trigger blocks to create one-shot pulses which last one scan cycle. The fast logic trigger pulse will last 100 ms. while the normal logic trigger pulse will last the complete scan cycle for analog blocks. Use according to application need. A Periodic timer output pulse may also be used to start the timer for the OFF delay.

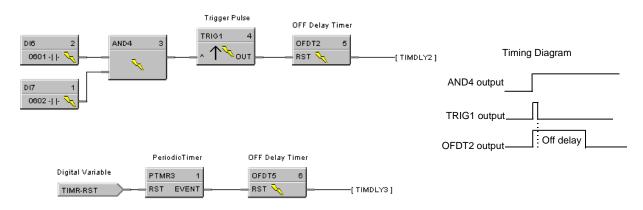
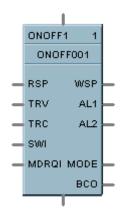



Figure 51 OFDT function block example

ON/OFF Function Block

Description

The **ON/OFF** label stands for the **On/Off Control function**. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Provide ON/OFF control. The output is either ON (100 %) or OFF (0 %).

Inputs

- **RSP** = Remote Setpoint (% or EU per SP Units)
- **TRV** = Track Value Output—1 = ON, 0 = OFF
- **TRC** = Track Value Command—1 = enable, 0 = disable (Mode = Local Override)
- **SWI** = Switch Inputs (from LPSW function block)

MDRQI= External Mode Request (connected to the MDRQO output of a MDSW function block) encoded as follows:

0.0 = No Change 1.0 = Manual Mode Request 2.0 = Automatic Mode Request 4.0 = Local Setpoint Request 8.0 = Remote Setpoint Request

Outputs

- **WSP** = Working Setpoint in Engineering Units for monitoring
- $\mathbf{AL1} = \text{Alarm 1}$
- AL2 = Alarm 2

MODE = Actual Mode encoded as follows: (Connect to Mode Flags block [MDFL] to encode mode status.)

- 0.0 RSP AUTO
- 1.0 RSP MAN
- 2.0 RSP Initialization Manual (See ATTENTION)
- 3.0 RSP Local Override (See ATTENTION)
- 4.0 LSP AUTO
- 5.0 LSP MAN
- 6.0 LSP Initialization Manual (See ATTENTION)
- 7.0 LSP Local Override (See ATTENTION)

BCO = Back Calculation Output (for blocks used as Cascade Secondary

ATTENTION

When a request to change from Auto to manual is received and:

- the request comes from the operator Interface, the request is ignored.
- the request comes from the Mode Switch (MDSW) function block, the request is retained and when leaving the Initialization Mode or Local Override Mode the loop will go to manual.

Block properties

Double click on the function block to access the function block properties dialog box.

Configuration parameters

The ON/OFF properties dialog box is divided into four tab cards:

GENERAL RSP RANGE/LIMIT ALARMS

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 47 describes the parameters and the value or selection.

ON	OFF Function Block Properties		x
G	eneral RSP Range / Limit Alarms		
	Block		1
	Number 1	Tag Name ONOFF001	
	Order 1	Descriptor	
	Control	Start / Restart	
	Direction Reverse 💌	Initial mode Man LSP 💽	
	SP tracking None	Power up mode Man LSP 💌	
	Hysteresis (%)	Fail Safe Out	
		OK Cancel	

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order	Read Only. See "Configure" Menu, "Execution Order" to change.
	Tag Name	N/A	8-character tag name	
	Descriptor	N/A	Block description	
Control	Direction	N/A	Control Action	REVERSE - Proportional action causes output to decrease as process variable increases.
				DIRECT - Proportional action causes output to increase as process variable increases.
	SP Tracking	N/A	Setpoint Tracking	NONE
				TRACK PV - When control mode is "manual", local setpoint tracks process variable.
				TRACK RSP - When setpoint is remote setpoint, local setpoint tracks remote setpoint.
	Hysteresis	13	Output Hysteresis	0 % to 10 % of input span
Start/Restart	Initial Mode	N/A	Control Mode and Setpoint at NEWSTART	MAN LSP - Manual control and last local setpoint
			Newstart is the first scan cycle following the cold start of the controller	AUTO LSP - Automatic control and last local setpoint.
				AUTO RSP - Automatic control and remote setpoint.
				MAN LSPonly - Manual control and local setpoint only.
				AUTO LSPonly - Automatic control and local setpoint only*.
				AUTO RSPonly - Automatic control and remote setpoint only*.
				*These modes will override the configured POWER UP MODE.
	Power up Mode	N/A	Control Mode and Setpoint at power up	MAN LSP - Manual control and last local setpoint
			AM LSP - Same control mode (auto or manual) and last local setpoint.	
				AM LR - Same control mode (auto or manual) and setpoint (local or remote) as at power- down.
	Failsafe Out	23	Failsafe Output Selection	ON OFF

Table 47 General tab configuration parameters

RSP tab

It looks like this graphically on the Control Builder. Table 48 describes the parameters and the value or selection.

ONOFF Function	Block Properties	×
General RSP	Range / Limit Alarms	
	Pinput (%)	
		OK Cancel

Table 48 RSP tab configuration parameters

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Remote Setpoint Source and Units	Use RSP Input (EU)	N/A	Use Remote Setpoint in Engineering Units	Click on radio button to select
	Use RSP Input (%)		Use Remote Setpoint in Percent	Click on radio button to select
	Use LSP2 (EU)		Use Local Setpoint #2 in Engineering Units	Click on radio button to select

RANGE/LIMIT tab

It looks like this graphically on the Control Builder. Table 49 describes the parameters and the value or selection.

ONOFF Function Block Pro	perties		х
General RSP Range / L	imit Alarms		
- Ranging		_ Limiting	
PV high range	100	SP high limit 100	
PV low range	0	SP low limit 0	
Display		SP rate down (EU/Min) 0	
Decimal places	0	SP rate up (EU/Min) 0	
Units			
Dev bar range (EU)	100		
		OK Cancel	

Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Ranging PV High range		0	PV High Range Value	-99999 to 99999
	PV Low Range	1	PV Low Range Value	-99999 to 99999
Display	Decimal Places	N/A	Number of digits to display after decimal point.	0 to 5
	Units	N/A	Text to display for EU	4 characters
	DEV Bar Range (EU)	N/A	Deviation Bar Range on the Operator Interface	-99999 to 99999
Limiting	SP High Limit	6	Setpoint High Limit Value - prevents the local and remote setpoints from going above the value set here.	–99999 to 99999
	SP Low limit	7	Setpoint Low Limit Value - prevents the local and remote setpoints from going below the value set here.	–99999 to 99999
	SP Rate Down	9	Setpoint Rate Down value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint down to the new one.	0 (off) to 9999 (eu/min)
	SP Rate Up	10	Setpoint Rate Up value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint up to the new one.	0 (off) to 9999 (eu/min)

Table 49 Range/limit tab configuration parameters

ALARMS tab

It looks like this graphically on the Control Builder. Table 50 describes the parameters and the value or selection.

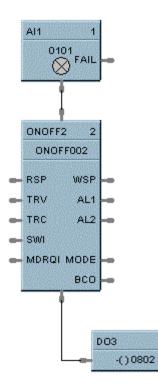
ONOFF Function Block Properties		×
General RSP Range / Limit Alarms		
Alarm 1		
Setpoint 1	Type No Alarm 💌	
Setpoint 2 0	Type No Alarm 💌	
Alarm 2		
Setpoint 1	Type No Alarm 💌	
Setpoint 2 0	Type No Alarm 💌	
Alarm Hysteresis (%)		
	OK Cancel	

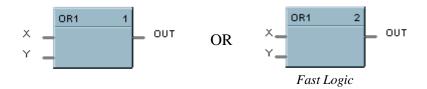
Properties Function	Parameter	Index #	Parameter Description	Value or Selection
Alarm 1	Setpoint 1	14	Alarm 1 Setpoint 1 Value - this is the value at which you want the alarm type chose below to activate	–99999 to 99999 in Engineering Units
	Туре	N/A	Alarm 1 Setpoint 1 Type - select what you want Alarm 1 Setpoint 1 to represent.	Selections: NO ALARM PV_HIGH PV_LOW DEV_HIGH DEV_LOW SP_HIGH SP_LOW OUT_HIGH OUT_LOW
	Setpoint 2	15	Alarm 1 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 1 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm 2	Setpoint 1	16	Alarm 2 Setpoint 1 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 1 Type	Same as Alarm 1 Setpoint 1
	Setpoint 2	17	Alarm 2 Setpoint 2 Value	Same as Alarm 1 Setpoint 1
	Туре	N/A	Alarm 2 Setpoint 2 Type	Same as Alarm 1 Setpoint 1
Alarm Hysteresis	%	22	Alarm Hysteresis in %	0 % to 5 %

Table 50	Alarm ta	o configuration	parameters
----------	----------	-----------------	------------

Example

Figure 52 shows a Function Block Diagram using an ON/OFF function block.




Figure 52 ON/OFF function block example

з

2OR Function Block

Description

The **2OR** label stands for the inclusive **OR** (**2 Inputs**) **Boolean logic function**. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Monitors two digital input signals (X, Y) to set state of digital output signal (OUT).

- If X = OFF and Y = OFF, then **OUT = OFF**.
- If X = ON and/or Y = ON, then: OUT = ON.

Input

 $\mathbf{X} =$ First digital signal.

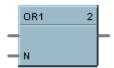
Y= Second digital signal.

Output

OUT = Digital signal controlled by status of input signals

Block properties

Logic Block I	Properties	×
Block	Number 1 Order 1	OK Cancel
- Invert Input	1 🗖	


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Input state

You can invert Input 1 or input 2 or both. If the input is inverted, an input line that is ON is seen as OFF. ("N" appears on Icon next to the inverted input.)

Example

Figure 53 shows a Function Block Diagram using a 2OR function block.

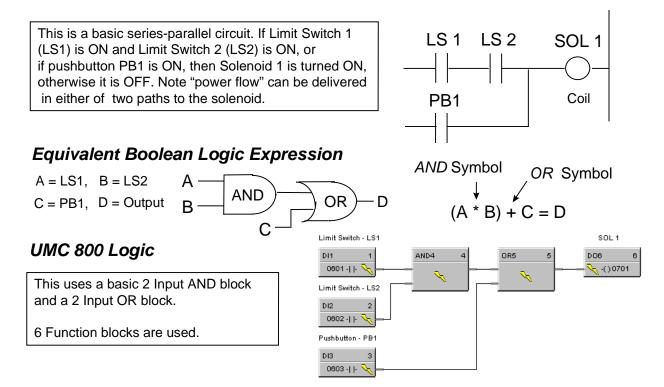


Figure 53 2OR function block example

4OR Function Block

Description

The **4OR** label stands for the inclusive **OR** (**4 Inputs**) **Boolean logic function**. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns digital output (OUT) OFF when inputs X1 through X4 are OFF. Thus,

- If input X1 or X2 or X3 or X4 is ON, then: OUT = ON.
- If all inputs are OFF, then: **OUT = OFF**.

Input

- **X1** = First digital signal
- $\mathbf{X2} = \mathbf{Second} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X3} = \text{Third digital signal}$
- X4 = Fourth digital signal

Output

OUT = Digital signal controlled by status of input signals

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Input state

You can invert Input 1, 2, 3, 4, or all. If the input is inverted, an input line that is ON is seen as OFF. ("N" appears on the Icon next to the inverted input.)

Example

Figure 54 shows a Function Block Diagram using a 4OR function block.

Output = X1 or X2 or X3 or X4

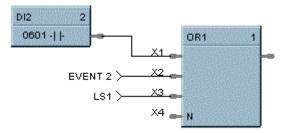
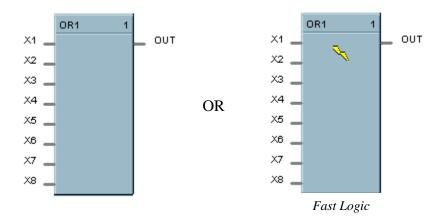



Figure 54 4OR function block example

8OR Function Block

Description

The **8OR** label stands for the inclusive **OR** (**8 Inputs**) **Boolean logic function**. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns digital output (OUT) OFF when inputs X1 through X8 are off, thus:

- If input X1 or X2 or X3 or X4 or X5 or X6 or X7 or X8 is ON, then: OUT = ON.
- If all inputs are OFF, then: **OUT = OFF.**

Input

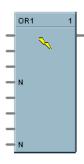
- X1 = First digital signal
- X2 = Second digital signal
- $\mathbf{X3} =$ Third digital signal
- X4 = Fourth digital signal
- $\mathbf{X5} = \mathbf{Fifth} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X6} = \mathbf{Sixth} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X7} = \mathbf{Seventh} \ \mathbf{digital} \ \mathbf{signal}$
- $\mathbf{X8} = \text{Eight digital signal.}$

Output

OUT = Digital signal controlled by status of input signals

Block properties

Logic Block Properties	X
Logic Block Properties Block Number 1 Order 1 Invert Input 1 2 3	OK Cancel
4 12 5 □ 6 □ 7 □ 12 12 12 12 12 12 12 12 12 12 12 12 12	


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Input state

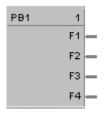
You can invert Input 1, 2, 3, 4, 5, 6, 7, 8 or all. If the input is inverted, an input line that is ON is seen as OFF. ("N" appears on the ICON next to the inverted input.)

CAUTION Unused Inputs default to 0.

Example

Figure 55 shows a Function Block Diagram using an 8OR function block.

DI2 2 0601-||-OR1 4 DIS 3 Χ1 0602 -| |-Х2 ХЗ EVENT 2 >---D14 4 X4 👝 N 0603 -| |-X5 _ LS1 >---X6 👝 N LS2 > X7 🛶 N X8 🛶 N


Output = X1 or X2 or X3 or $\overline{X4}$ or X5 or $\overline{X6}$ or $\overline{X7}$ or $\overline{X8}$

PB Function Block

Description

The **PB** label stands for the inclusive **Pushbutton**. This block is part of the *Logic* category. It looks like this graphically on the Control Builder.


Function

Provides the interface from the operator panel to the logic functions of the controller. Provides a one-shot logic ON in response to pressing the corresponding function key on the operator interface.

This selection lets you **configure** the Pushbutton function display that will provide the interface to the four logic operator keypad keys (F1 through F4). You can do this for up to four Pushbutton blocks giving you 4 groups (total 16 pushbuttons) that can be set up for selection on your display buttons (1-8).

When you select a pushbutton group on a display button (1-8), the operator interface will display the pushbutton function group screen and buttons F1-F4 on the operator interface will display the information that has been set up for that group.

PUSI	HBUTTON GROUP 20:49
TAG45678 STATE1	FUNCTION DESCRIP

Pushbutton Function Group Screen

Output

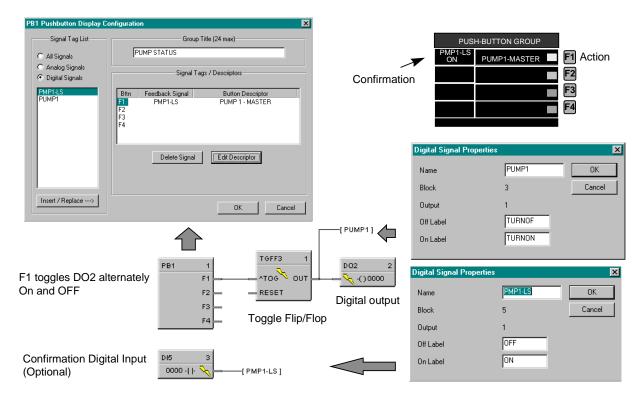
- F1 = Provide 1 shot logic ON in response to pressing Pushbutton F1
- F2 = Provide 1 shot logic ON in response to pressing Pushbutton F2
- F3 = Provide 1 shot logic ON in response to pressing Pushbutton F3
- F4 = Provide 1 shot logic ON in response to pressing Pushbutton F4

Configuration

Double click on the function block to access the "Pushbutton Display Configuration" dialog box.

Configuration procedure

Follow the procedure in Table 51 to configure the Pushbutton Function Groups.

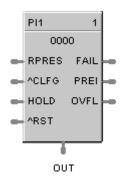

Table 51 Pushbutton function group configuration

 There are four pushbuttons that can be configured for each block. You can assign just a label for the display using the Output descriptor. You can also select signal tags from the "Signal Tag List" if you require a feedback signal to be shown on the pushbutton display. 	PB1 Pushbutton Display Configuration Signal Tag List Group Title (24 max) All Signals Analog Signals Digital Signals Bitth Feedback Signal Button Descriptor F1 F2 F3 F4 Delete Signal Edit Descriptor OK
Enter the Group Title Text in the appropriate field.	Group Title (24 max)
 The "Signal Tag List" field shows all the Signal Tags that have been configured on the Function Block Diagram. Select "All Signals", "Analog Signals", or "Digital Signals". To Add a Digital Signal tag to a Pushbutton location: Click on a signal tag in the list, then click on "Insert/Replace". The selected Signal tag will be placed in the next available position in the "Signal Tags/Descriptors" field. To Insert a Digital Signal tag to a Pushbutton location: Select a position in the "Signal Tags/Descriptors" field., then click on INSERT. (You must click in the <i>first</i> column of the Selected Signal Tag list to select a row.) The selected Signal tag will be placed in the position chosen, and other signal tags will move down as required. You may only insert to the occupied portion of the list. An attempt to insert to any empty row will place the new item in the first empty row. 	Signal Tag List All Signals Analog Signals Digital Signals ALARM 1 ALARM 2 Insert / Replace>

The selected Signal Tag will be placed in the "Signal Tags/Descriptors" field	Signal Tags / Descriptors
 Repeat selection for up to 4 Pushbuttons. To delete a selected Tag, click on the position of the tag and click "Delete". 	Bttn Feedback Signal Button Descriptor F1 F2 F3 F4 Delete Signal Edit Descriptor
 To Add or Edit and output descriptor to the display, click on the "Bttn" number and then on "Edit Descriptor" and type in the descriptor in the Edit field. Click "OK". You can assign Pushbutton Configuration Groups to Display Buttons, refer to Display Buttons (1-8) Configuration in the Control Builder User's Guide. 	Edit (16 max) Enter Descriptor OK

Example

Figure 56 is an overview of a pushbutton configuration.



PI Function Block

Description

The **PI** label stands for **Pulse Input.** This block is part of the *Logic* category. It looks like this graphically on the Control Builder.

Function

This function block reads a single input channel from a pulse-frequency-input module. It scales inputs from the module to user-configured engineering units corresponding to accumulated pulses. The scaling typically represents a quantity. The preset values, reset, preset action, hold and clear flags are sent to the module and the module will respond with FAIL, counter overflow indicator (OVFL), preset indicator (PREI) and accumulated pulse counts.

Input

RPRESS = Remote preset count value (in EU); used to determine the status of the PREI output **PREI** = OFF, [0] when count is less than the RPRESS value, else ON) **^CLFG** = Clear flags. An OFF to ON transition clears the FAIL and OVFL flags to zero. **HOLD** = A Boolean value when set to ON holds the pulse counter at its current value. **^RST** = when the HOLD input is set to ON, an OFF to ON transition resets the pulse counter to zero. It also clears the FAIL and OVFL flags.

Output

FAIL = Failed Input Indication. A Boolean value that turns ON when the Pulse/Frequency Input module reports a failure. This is cleared by the ^CLFG or ^RST inputs.

PREI = A Boolean value that turns ON when the accumulated pulse count => preset count. (Note 1.) **OVFL** = Overflow flag. This turns ON when the counter on the module overflows. This is cleared by the ^CLFG or ^RST inputs.

OUT = The accumulated Engineering Unit (EU) count. The forcing of OUT is permitted within this block.

Note 1. Due to the delay in messaging and the response time of the module, there can be a lag between the PREI output of the function block versus the DO on the module. The function block output can lag the digital output on the card by as much as one scan cycle period.

Block properties

dee lague Properties	0	
Beck Ruther Date	p	Hota [1년 Danal [1년
Philes Weight Ell per Fulse	P	
Peod UseRetails of		Front Autors 17
UserLand C		The Address in the
	0K	Cascal

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the PI function Block parameters to the desired value or selection that matches your operating requirements. Table 22 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Address	I/O Module	N/A	Address of select I/O Module	From 1 to 16
	Channel	N/A	Channel on selected I/O Module	From 1 to 6
Pulse Weight	EU per Pulse	1	Number of EU per Pulse	0-99999 EU Default = 1
Preset	Use Remote	4	Remote Preset Count Click on radio button to turn ON	ON = Use Remote Preset OFF = Use Local Preset Default = ON
	Use Local	3	Local Preset Count in EU. Used to determine the ststus of the PREI output. Click on radio button to select.	0 = no alarming
	Preset Action	2	Preset Action determines how the PREI and the associated digital output on the module react when the counter reaches the preset value. Preset Action = ON	OFF = (latch) the hardware module output latches ON until reset. The PREI latches ON until the module acknowledges the Reset. ON = (trigger) the hardware module output turns ON for 1 second. The PREI turns ON for approximately 1 second. Default = ON

Table 52 Pulse input function block parameters

Example

Figure 57 shows a Function Block Diagram using a Pulse Input Module and PI function block to control the amount of material flowing into a tank. A counter is used to count fill cycles.

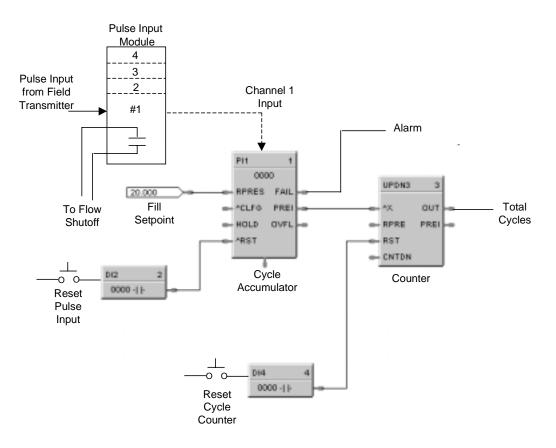
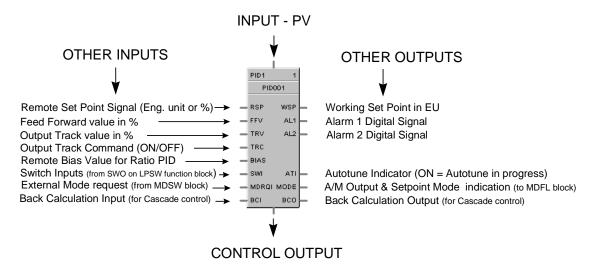



Figure 57 PI function block example

PID Function Block

Description

The **PID** label stands for **Proportional, Integral, Derivative (3-mode)** control action. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Provides Proportional (P), Integral (I) and Derivative (D), (3-mode) control action based on the deviation or error signal created by the difference between the setpoint (SP) and the Process variable analog input value (PV).

It provides two digital output signals for alarms based on configured parameters.

The PID function block provides for Feedforward, Cascade, and Ratio control.

Automatic tuning with Fuzzy Logic Overshoot Suppression can be configured.

Digital inputs may be used to set control mode, select the setpoint source, change control action plus other discrete actions.

For examples of PID Control, refer to:

Basic PID Configuration Duplex Control Cascade Control Ratio Control Cascade Control of Boiler Drum Level Cascade Control of a Boiler Drum Level - 3 Element Feedwater Control

Inputs

PV = Process Variable Analog Input value in Engineering Units to be controlled

RSP = Remote Setpoint Analog Input value in Engineering Units or Percent to provide external setpoint

FFV = Feedforward value in percent. The Feedforward value is multiplied by the Feedforward Gain, then directly summed into the output of the PID block.

TRV = Output Track value in Percentage (PID Output = TRV Input when TRC = ON.)

TRC = Output Track Command [ON, OFF] (On -Enables TRV.) (Mode = Local Override)

BIAS = Remote Bias value for Ratio PID

SWI = Switch Inputs (from SWO on LPSW function block)

- 0 =No Change
- 1 = Initiate Autotuning
- 2 = Change Control Action
- 4 = Force Bumpless Transfer
- 8 = Switch to Tune Set 1
- 16 = Switch to Tune Set 2

MDRQI = External Mode request (typically connected to the MDRQO output of a MDSW function block that encoded discrete switch inputs).

- 0 = No Change
- 1 = Manual Mode Request
- 2 = Auto Mode Request
- 4 = Local Mode Request
- 8 = Remote Mode Request

BCI = Back Calculation Input (for blocks used as Cascade Primary)—See ATTENTION 2.

Outputs

OUT = Control Output

WSP = Working Setpoint in Engineering Units for monitoring

AL1 = Alarm 1 - Digital Signal

AL2 = Alarm 2 - Digital Signal

ATI = Autotune Indicator (ON = Autotune in Progress)

MODE = Loop mode status (typically connected to the Mode Flags block for encoding). Value indicates modes as follows:

- 0.0 RSP AUTO
- 1.0 RSP MAN
- 2.0 RSP Initialization Manual (See ATTENTION 1)
- 3.0 RSP Local Override (See ATTENTION 1)
- 4.0 LSP AUTO
- 5.0 LSP MAN
- 6.0 LSP Initialization Manual (See ATTENTION 1)
- 7.0 LSP Local Override (See ATTENTION 1)

BCO - Back Calculation Output (for blocks used as Cascade Secondary)—See ATTENTION 2.

ATTENTION

- 1. When a request to change from Auto to manual is received and:
 - the request comes from the operator Interface, the request is ignored.
 - the request comes from the Mode Switch (MDSW) function block, the request is retained and when leaving the Initialization Mode or Local Override Mode the loop will go to manual.
- 2. BCO output is provided for applications where the block is used as a cascade secondary. BCI input is provided for applications where the block is used as a cascade primary. When the BCO output of a secondary loop is connected to the BCI input of a primary loop, bumpless transfer is achieved when the secondary is switched into remote setpoint (i.e., cascade) mode. In addition, the primary loop is prevented from reset windup when the secondary is de-coupled from the process. The secondary is de-coupled from the process when it is in local setpoint mode or manual output mode or has reached a setpoint or output limit or is integral limiting because of it's BCI input. For example, see Figure 60.

Block properties

Double click on the function block to access the function block properties dialog box.

Dialog box structure

The PID properties dialog box is divided into six tab cards

GENERAL RSP RANGE/LIMIT TUNING ACCUTUNE ALARMS

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 53 describes the parameters and the value or selection.

PID Function Block Pr	operties		×
General RSP Rang	je / Limit Tuning	Accutune Alarms	
Block			
Number	1	Tag Name PID001	
Order	1	Descriptor	
Control		Start / Restart	
Algorithm	PID A	Initial mode	Man LSP 💽
Direction	Reverse 💌	Power up mode	Man LSP 💌
SP tracking	None 💌	Power up out	Failsafe 🔽
,est		Failsafe out	0
			DK Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order	Read Only. See "Configure" Menu, "Execution Order" to change.
	Tag Name	N/A	8 character tag name	
	Descriptor	N/A	Block descriptor	
Control	Algorithm	N/A	Control Algorithm Note: In PID B, step changes in setpoint will not bump the output; the output will slew smoothly to the new value. In PID A, a step change in setpoint will result in a step change in output.	 PID A - is normally used for 3 mode control. The output can be adjusted somewhere between 100 % and 0 %. It applies all three control actions - Proportional (P), Integral (I), and Derivative (D) - to the error signal. PID B - Unlike the PID-A equation, the controller gives only an integral response to a setpoint change, with no effect on the output due to the Gain or Rate action, and gives full response to PV changes. DUPA - like PID A but provides an automatic method to switch tuning constant sets for Heat/Cool applications. DUPB - like PID B but provides an automatic method to switch tuning constant sets for Heat/Cool applications. NOTE: With PID B or DUPB selection, you will not be allowed to set RESET or RPM to 0.00 (OFF). Reset must be enabled.
	Direction	N/A	Control Action	DIRECT - PID action causes output to increase as process variable increases. REVERSE - PID action causes output to decrease as process variable increases.
	SP Tracking	N/A	Setpoint Tracking	None
				Track PV - When control mode is "manual", local setpoint tracks process variable.
				Track RSP - When setpoint is "remote setpoint", local setpoint tracks remote setpoint.

Table 53 General tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Start/ Restart	Initial Mode	N/A	Control Mode and Setpoint at NEWSTART	MAN LSP - Manual control and last local setpoint
			Newstart is the first scan cycle following the	AUTO LSP - Automatic control and last local setpoint.
		cold start of the controller		AUTO RSP - Automatic control and remote setpoint.
				Man LSPonly - Manual control and local setpoint only.
				Auto LSPonly - Automatic control and local setpoint only*.
				Auto RSPonly - Automatic control and remote setpoint only*.
				*These modes will override the configured POWER UP MODE.
	Power Up Mode	N/A	Control Mode and Setpoint at power up	MAN LSP - Manual control and last local setpoint
				AM LSP - Same control mode (auto or manual) and last local setpoint.
				AM LR - Same control mode (auto or manual) and setpoint (local or remote) as at power-down.
	Power Up	N/A	Output at Power up	LAST OUT - Same as at power down.
	Out			FAILSAFE - Failsafe output value.
Failsafe Out	Failsafe Out	16	Failsafe Output Value	-5 % to 105 %

RSP tab

It looks like this graphically on the Control Builder. Table 54 describes the parameters and the value or selection.

ΡI	D Func	tion Blo	ck Propert	ies							X
	General	RSP	Range / Li	mit Tuning	Accu	itune	Alam	ns			
	Rem	ote Setpo	oint Source a	ind Units —							
	•	Use RSF	^o Input (EU)j								ž
	0	Use RSF	⊃ Input (%)								-
	0	Use LSF	2 (EU)								
		o / Bias (a No Ratic	apply to RSP o or Bias	Input, not L	.SP2) —						
	0	Use Loc	al BIAS>		L	ocal B	Bias va	alue (EU)	0		
	•	Use BIA:	S input					Ratio	1		
_									K	Ca	ancel

Table 54 RSP tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Remote Setpoint Source and Units	Use RSP Input (EU)	N/A	Use Remote Setpoint in Engineering Units	Click on radio button to select
	Use RSP Input (%)		Use Remote Setpoint in Percent	Click on radio button to select
	Use LSP2 (EU)		Use Local Setpoint #2 in Engineering Units	Click on radio button to select
Ratio/Bias	No Ratio or Bias	N/A	No ratio and bias applied to the function block	Click on radio button to select
(RSP Input Only)	Use Local Bias		Use Bias value selected on Tab	Click on radio button to select Enter value at " Local Bias Value " on tab.
	Use Bias Input		Use Bias value attached to an input to the block	Click on radio button to select
	Local Bias Value (EU)	40	Local bias value in engineering units	Enter local bias value –99999 to 99999
	Ratio	39	Gain value for Ratio PID	-20 to +20

RANGE/LIMIT tab

It looks like this graphically on the Control Builder. Table 55 describes the parameters and the value or selection.

PID Function Block Proper	rties		×
General RSP Range / L	.imit Tuning A	ccutune Alarms	
- Ranging		– Limiting –	
PV high range	100	SP high limit	100
PV low range	0	SP low limit	0
Display		Out high limit	105
Decimal places	0	Out low limit	-5
Units		SP rate down (EU/Min)	0
Dev bar range (EU)	100	SP rate up (EU/Min)	0
		ОК	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Ranging	PV High Range	4	PV High Range Value	-999999 to 99999
	PV Low Range	5	PV Low Range Value	-999999 to 99999
Display	Decimal Places	N/A	Number of digits to display after decimal point.	0 to 5
	Units	N/A	Text to display for EU	4 characters
	DEV Bar Range (EU)	N/A	Deviation Bar Range on the Operator Interface	-99999 to 99999
Limiting	SP High Limit	11	Setpoint High Limit Value - prevents the local and remote setpoints from going above the value set here.	–99999 to 99999
	SP Low Limit	12	Setpoint Low Limit Value - prevents the local and remote setpoints from going below the value set here.	–99999 to 99999
	Out High Limit	14	Output High Limit Value - is the highest value of output beyond which you do not want the automatic output to exceed	–5 % to 105 %
	Out Low Limit	15	Output Low Limit Value - is the lowest value of output beyond which you do not want the automatic output to exceed	–5 % to 105 %
	SP Rate Down	35	Setpoint Rate Down value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint down to the new one.	0 (off) to 9999 (eu/min)
	SP Rate Up	36	Setpoint Rate Up value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint up to the new one.	0 (off) to 9999 (eu/min)

Table 55 Range/limit tab configuration parameters

TUNING tab

It looks like this graphically on the Control Builder. Table 56 describes the parameters and the value or selection.

ATTENTION

Use of Tune SET 1 or 2 can be selected via input (SWI) from the Loop Switch block output (SWO) or, in the case of DUP_A or DUP_B, automatically depending on the value of the previous output (\geq 50 % or < 50 %).

General RSP Range / Limit Tuning Accutune Alarms	
General RSP Range / Limit Gining Accutune Alarms	
Tuning Constants	1
Set 1Set 2	
Gain: 🔽 🚺	
Reset Minutes: 0 0	
Rate (Minutes)	
Feed Forward Gain	
Manual Reset 0 %	
OK Cance	J

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Tuning Constants	Prop Band	0 PB1 or Gain1	Proportional Band (PB) - is the percentage of the range of the measured variable for which a proportional controller will produce a 100 % change in its output.	0.1 to 1000
	or Gain	30 PB2 or Gain2	Gain - is the ratio of output change (%) over the measured variable change (%) that caused it. $G = \frac{100 \%}{PB \%}$	0.1 % to 1000 % ATTENTION: Enter values for tuning set 1 and tuning set 2 in specified fields.
			where PB is the proportional Band (in %)	
	Reset Minutes or Repeats per Minute	2 Reset1 or 32 Reset2	RESET (Integral Time) - adjusts the controller's output according to both the size of the deviation (SP-PV) and the time it lasts. The amount of corrective action depends on the value of Gain. The reset adjustment is measured as how many times proportional action is repeated per minute (Repeats/minute) or how many minutes before one repeat of the proportional action occurs (Minutes/repeat).	0.02 to 50.00 Must be enabled for PID-B or DUP-B algorithm selections.
	Rate Minutes	1 Rate1 or 31 Rate2	RATE action, in minutes affects the controller's output whenever the deviation is changing; and affects it more when the deviation is changing faster.	0 or 0.1 to 10.00 minutes 0 = OFF
Feedforward Gain	Feedforward Gain	37	Applies Gain to the feedforward value (FFV). Feedforward Input is multiplied by this value.	0.0 to 10.0
Manual Reset	Manual Reset	26	MANUAL RESET- is only applicable if you do not use RESET (Integral Time) Allows correction of output to account for load changes to bring the PV up to setpoint.	–100 to 100 (in % of Output)

Table 56	Tuning tal	o configuration	parameters
----------	------------	-----------------	------------

ACCUTUNE tab

It looks like this graphically on the Control Builder. Table 57 describes the parameters and the value or selection.

PID Function Block Properties		×
General RSP Range / Limit Tuning Acc	utune Alarms	
- Accutune Type		
Disabled		
O On Demand		
Enable Fuzzy Overshoot Suppression		
	OK	Cancel

Table 57 Accutune tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection	
Accutune Type	Disabled	N/A	Disables Accutune	Click on radio button to select.	
	On Demand		When initiated, the controller will start controlling to the setpoint while it identifies the process, calculates the tuning constants, and begins PID control with the correct tuning parameters.	Click on radio button to select.	
28		28	Fuzzy Overshoot Suppression minimizes overshoot after a setpoint change or a process disturbance.		
Click on block to select			The fuzzy logic observes the speed and direction of the PV signal as it approaches the setpoint and temporarily modifies the internal controller response action as necessary to avoid an overshoot.		
			There is no change to the PID algorithm, and the fuzzy logic does not alter the PID tuning parameters.		
			This feature can be independently En required by the application to work wi tuning.		

ATTENTION

Accutune is an On-demand tune only. You must provide a 0 to 1 transition to start another tuning cycle. The tuning will disturb the output to evaluate the tuning constants required.

ALARMS tab

It looks like this graphically on the Control Builder. Table 58 describes the parameters and the value or selection.

PID Function Block Properties			X
General RSP Range / Limit Tuning Accutune	Alarms		
Alarm 1			
Setpoint 1	Туре	No Alarm 💌	
Setpoint 2 0	Туре	No Alarm 💌	
Alarm 2			
Setpoint 1	Туре	No Alarm 💌	
Setpoint 2	Туре	No Alarm 💌	
Hysteresis (%) 0			
	[OK Cancel	

Properties Group	Parameter	Index #	Parameter Description	Value or	r Selection
Alarm 1	Setpoint 1	17	Alarm 1 Setpoint 1 Value - this is the value at which you want the alarm type chose below to activate	–99999 to 99999 in Engineering Units	
				Within the PV range when alarm type is PV or SP	
				Within PV span when alarm type is DEV	
				–5 % to 105 % when alarm type is output.	
	Туре	N/A	Alarm 1 Setpoint 1 Type - select what you want Alarm 1 Setpoint 1 to represent.	Selections:	
				NO ALARM	
				PV_HIGH	High PV Alarm
				PV_LOW	Low PV Alarm
				DEV_HIGH	High Deviation alarm
				DEV_LOW	Low Deviation alarm
				SP_HIGH	High Setpoint alarm
				SP_LOW	Low Setpoint alarm
				OUT_HIGH	High Output alarm
				OUT_LOW	Low Output alarm
	Setpoint 2	18	Alarm 1 Setpoint 2 Value	Same as Alarm 1 Setpoint 1	
	Туре	N/A	Alarm 1 Setpoint 2 Type	Same as Alarm 1 Setpoint 1	
Alarm 2	Setpoint 1	19	Alarm 2 Setpoint 1 Value	Same as Alarm 1 Setpoint 1	
	Туре	N/A	Alarm 2 Setpoint 1 Type	Same as Alarm 1 Setpoint 1	
	Setpoint 2	20	Alarm 2 Setpoint 2 Value	Same as Alarm 1 Setpoint 1	
	Туре	N/A	Alarm 2 Setpoint 2 Type	Same as Alarm 1 Setpoint 1	
Alarm Hysteresis	%	25	Alarm Hysteresis in %	0 % to 5 %	

Table 58	Alarms tal	o configuration	parameters
----------	------------	-----------------	------------

Example 1 - Basic PID configuration example

Figure 58 shows a Function Block Diagram using a simplified PID Configuration (reference only) and its basic Configuration.

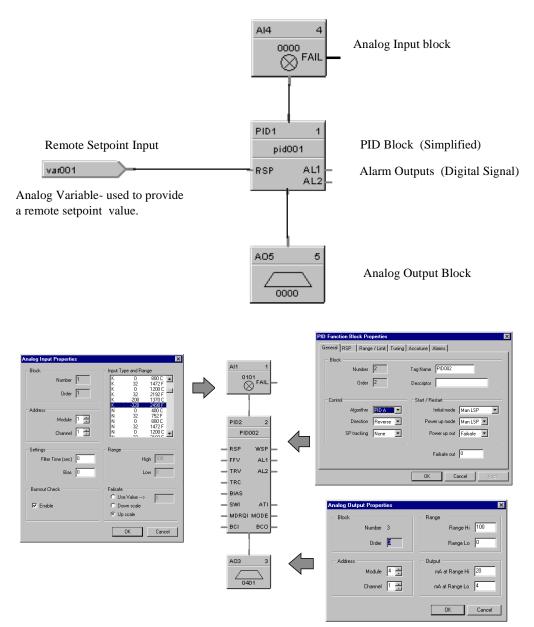


Figure 58 PID function block example

Example 2 - Duplex control - PID with heat/cool (duplex) output

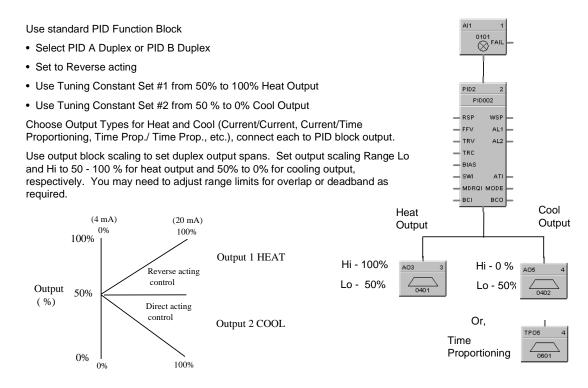


Figure 59 Duplex control example

Example 3 - Cascade control

The Cascade loop uses 2 PID blocks with the Back Calculation pin of the secondary connected to the primary loop. This transfers values back to the primary loop to adjust the PID for changes due to manual control.

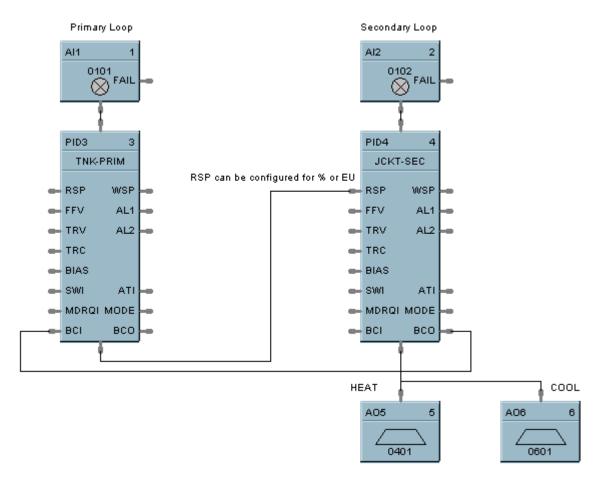
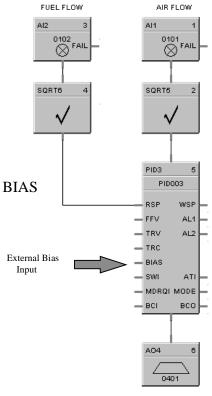
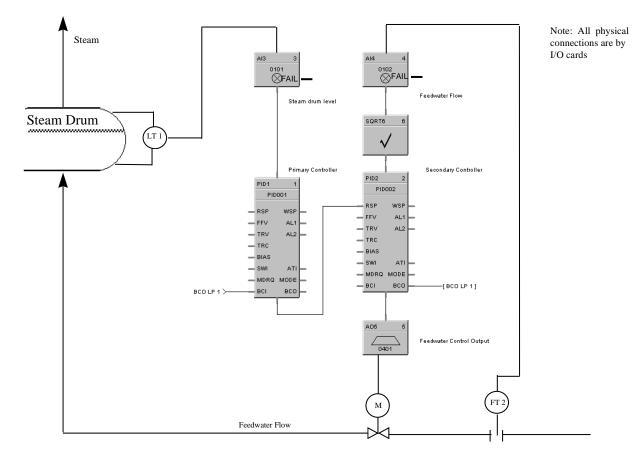
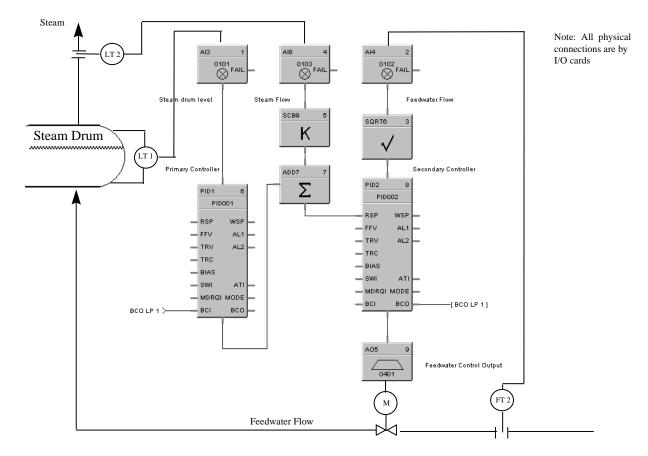


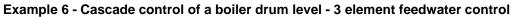
Figure 60 Cascade control example

Example 4 - Ratio control

FUEL FLOW The RATIO control loop requires selection of the Al2 remote SP of the PID for ratio control. The Ratio 0102 and Bias values are available for adjustment \otimes from the Control Setup screen of the Operator Interface. The Bias may be a local value or come from an external source such as an O2 analyzer SQRT6 trim arrangement. You may elect to use % for the ratioed inputs (typically for boiler applications) or Eng. Units (EU) (for feed flows to a reactor, for example). Air (controlled variable)= Ratio x Fuel (RSP, or wild variable) + BIAS PID Function Block Properties ×

General RSP	Range / Limit Tuning	Accutune Alarms				
Remote Se	tpoint Source and Units					
O Use RSP Input (EU)						
🖲 Use R	SP Input (%)					
🔿 Use L	SP2 (EU)					
O No Ra	s (apply to RSP Input, not LSP atio or Bias ocal BIAS> IAS input	2) Local Bias value (EU) Ratio	0			
		0	K Cancel			


Figure 61 Ratio control example

Example 5 - Cascade control of a boiler drum level - basic

Figure 62 Cascade control of a boiler drum level - basic

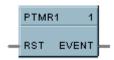


Figure 63 Cascade control of a boiler drum level - 3 element feedwater control

PT Function Block

Description

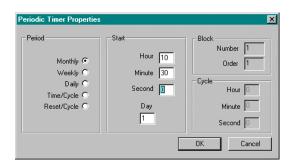
The **PT** label stands for **Periodic Timer**. This block is part of the *Counters/Timers* category. It looks like this graphically on the Control Builder.

Function (1 or 2)

4. *Time/Cycle:* Generates a discrete output pulse at a specified start time based on the real-time clock and at specified time periods thereafter.

Start Times = Month, Day, Hour, Minute, Second Cycle Periods = Monthly, Weekly, Daily Time Cycle Periods Within a Day = Hours (0-23) Minutes (0-59) Seconds (0-59) NOTE: Once started, period repeats until reset.

 5. Reset Cycle: Generates a digital output based on a digital input and at regular intervals thereafter. Time Start = ON to OFF transition of reset input. Cycle Time Period = Hours (0-23) Minutes (0-59) Seconds (0-59)


Input

RST = Reset/Enable (ON = Output disable, OFF = Output enable)

Output

OUT = Logic State. Output turns ON for one scan cycle when elapsed time matches setpoint time (One-shot)

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the PT function block parameters to the desired value or selection that matches your operating requirements. Table 59 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Block Order	N/A		Read Only. See "Configure" Menu, "Execution Order" to change.
Period	Monthly	N/A	Output turns ON once a month for one scan cycle. If the current month's last day is less than 31 it will turn ON on the last day of the month.	Enter START - Day (Days >31 = 31), Hour, Minute, Seconds
			Reset/Enable: ON = Hold off output OFF = Run	
	Weekly	N/A	Output turns ON once a week for one scan cycle.	Enter at START - Day (Monday through Sunday), Hour,
			Reset/Enable: ON = Hold off output OFF = Run	Minute, Seconds
	Daily	N/A	Output turns ON once a day for one scan cycle.	Enter at START - Hour, Minute, Seconds
			Reset/Enable: ON = Hold off output OFF = Run	Seconds
	Time/Cycle	N/A	Timer starts at a specific time of day then output pulses on/off on a time interval. Once started, start	Enter at START - Hour, Minute, Seconds
			time is ignored until reset. Reset Input: ON = stops cycle and holds off start OFF = enables start time	Enter at CYCLE - Hour, Minute, Second
	Reset/Cycle	N/A	Timer starts on an ON (1) to OFF (0) transition of the reset input, then output pulses on/off on a time interval. Once started, the cycle continues until the reset turns on.	Enter at CYCLE - Hour, Minute, Second
			Reset Input: ON = stops cycle and holds off start OFF = Output turns ON for one scan cycle at ON to OFF transition and cycle begins.	

Table 59	PT function	block configuration	parameters
----------	-------------	---------------------	------------

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Start	Hour	N/A	Start Hour	0 through 23
	Minute	N/A	Start Minute	0 through 59
	Second	N/A	Start Second	0 through 59
	Day	N/A	Start Day	Monthly - 1 - 31 (Days >31 = 31) If the current month's last day is less than 31 it will turn ON on the last day of the month. Weekly -Monday through Sunday
Cycle	Hour	N/A	Cycle Hour	0 through 23
	Minute	N/A	Cycle Minutes	0 through 59
	Second	N/A	Cycle Seconds	0 through 59

Example

Figure 64 shows a Function Block Diagram using a PT function block.

An OFF delay timer block output is ON as long as the RST input is logic HI (ON). It can be used for time duration but must be triggered by an ON to OFF transition on the Reset input. This can be accomplished using Trigger blocks (TRIG) to create one-shot pulses which last one scan cycle. The fast logic trigger pulse will last 100 ms. while the normal logic trigger pulse will last the complete scan cycle for analog blocks. Use according to application need. A **Periodic Timer (PT)** output pulse may also be used to start the timer for the OFF delay for time duration.

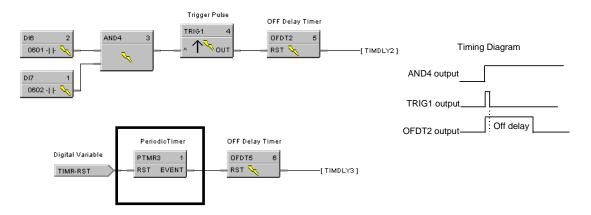
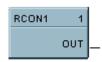



Figure 64 PT function block example

RCON Function Block

Description

The **RCON** label stands for **Read Constant Parameter Data**. This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Reads the numerical value of selected configuration parameter in a given function block. Select the index number of the required parameter from the specific function block reference data and enter it in the appropriate field in the "Read Constant Properties" dialog box.

Output

OUT = Analog value of parameter

Block properties

Read Constant Properties	×
Block Number 1 Order 1	OK Cancel
Read Parameter Block Numbe Parameter Inde	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

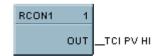
You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the RCON function Block parameters to the desired value or selection that matches your operating requirements. Table 60 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Read Parameters	Block Number	N/A	Number of control block that contains desired configuration parameter	1 to 250
	Parameter Index	N/A	Index number of configuration parameter to be read.	Select the index number of the required parameter from the specific function block reference data

Table 60 Read constant configuration data



TIP

The main purpose of this control block is to make a block configuration parameter (constant) available for display. To do this, you must enter the corresponding parameter index number for the selected configuration parameter. Select the index number of the required parameter from the specific function block reference data and enter it in the appropriate field in the "Read Constant Properties" dialog box.

RCON Example

Figure 65 shows a Function Block Diagram using the RCON function block.

ATTENTION

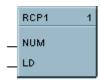

The process variable High Range Value for a PID block (Index #4) may be displayed at the Operator Panel with the Analog Signal Tag name TC1 PV HI, and/or the process variable may be used as an input to another control block.

Figure 65 RCON function block example

RCP Function Block

Description

The **RCP** label stands for **Recipe Selector**. This block is part of the *Setpoint Program* category. It looks like this graphically on the Control Builder.

Function

Used to initiate loading of recipe values into a chosen set of controller variables. Inputs include recipe number and load command. Loads numbered RECIPE (NUM) when digital signal (LD) is ON into the various blocks of the controller.

• If LD = OFF to ON, then: Recipe numbered (NUM) is loaded in place of the current set of variable values.

Input

NUM = Recipe number (1-50).

TIP

LD = Load recipe - OFF to ON will load the recipe.

The recipe is loaded at the time of block execution. If using multiple RECIPE blocks, they may counteract. Also, use the lowest execution numbers.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

ATTENTION

The recipe is loaded while the LD signal is on. It is not a one time load, it is a continuous load while the LD signal is on.

If the OI operator attempts to change a variable value (done by means of the Variable Edit display on the OI), the operator's changes will immediately be overwritten by the loading recipe since it also contains the variable.

To correct this problem, configure a one-shot trigger signal between LD and its signal. This will cause LD to go on for one scan cycle instead of staying on.

Example

Figure 66 shows a Function Block Diagram using an RCP function block. The BCD block selects a recipe number and the RCP block loads the recipe in place of the current set of recipe variables.

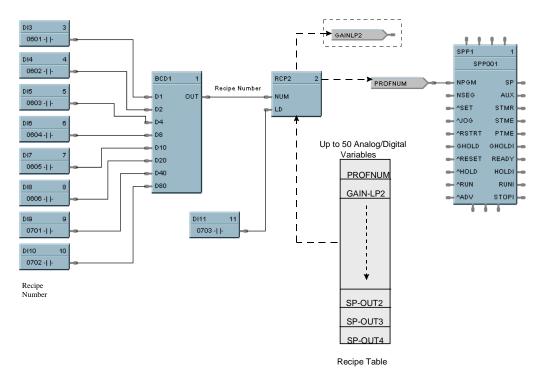
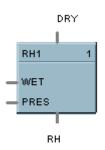



Figure 66 RCP function block example

RH Function Block

Description

The **RH** label stands for **Relative Humidity**. This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Calculates RH as a function of wet bulb temperature, dry bulb temperature and atmospheric pressure.

0-100 % RH is output as a floating point number between 0 and 100.

Input

```
DRY = Dry Bulb Temperature (^{\circ}F, metric = ^{\circ}C)
```

WET = Wet Bulb Temperature (°F, metric = °C)

PRES = Atmospheric Pressure (psi, metric = Pa)

Output

 $\mathbf{RH} = \text{Relative Humidity (0-100)}$

Block properties

Block 1 Order I Input/Output Properties Metric System:	Relative Humidity	×
Order Cancel	Diash, 1	OK
Input/Output Properties		Cancel
Metric System: 🗖	_Input/Output Properties	
	Metric S	System: 🗖

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Metric system

Click on this box to select Metric Units. Table 61 lists the units for the inputs and outputs.

Table 61 Metric units

Metric	ON	OFF
DRY	°C	°F
WET	°C	°F
PRES	Ра	PSI

TIP

It is physically impossible for the wet bulb to be warmer than the dry bulb. If this appears to be the case, it implies a problem with the sensors, and will result in a RH greater than 100 %. Downstream blocks should detect that situation and react promptly.

Example

Figure 67 shows an RH function block example.

A setup parameter allows inputs to be in Degrees F or Degrees C. When Degrees F is selected, pressure is assumed to be in PSIA. When Degrees C is selected, pressure is assumed to be in Pa. (101325 Pa = 1 std. Atmosphere.

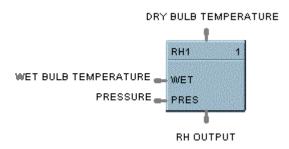
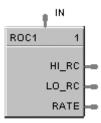



Figure 67 RH function block example

ROC Function Block

Description

The **ROC** label stands for **Rate of Change.** This block is part of the Auxiliary category. It looks like this graphically on the Control Builder.

Function

Provides:

- an analog output representing units per minute change of the analog input.
- compare setpoints for high and low rate of change.
- compare selections for increasing, decreasing or both directions of change.
- a logic 1(ON) output when input rate exceeds high rate setpoint
- a logic 1(ON) output when input rate is less than the low rate setpoint.

Inputs

IN = Analog Input

Outputs

HI_RC = ON if input rate exceeds High Rate setpoint

LO_RC = ON if input rate is less than the Low Rate setpoint

RATE = Analog Output representing Engineering Units per minute of change of the Analog Input

Block properties

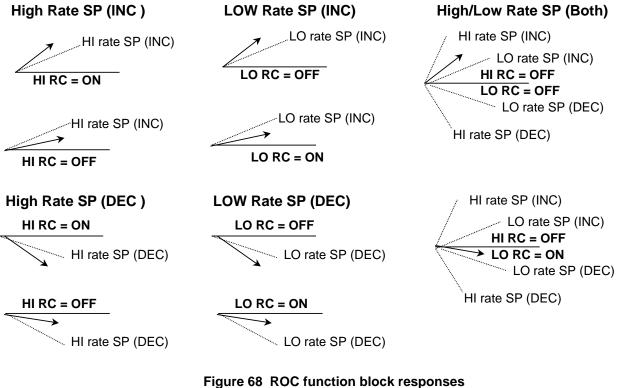
Rate of change configuration	on - ROC 1	×
Filter Time (min.):	E	OK
Hysteresis:	0	Cancel
High Rate Set Point (eu/min)		
	Both Direction	IS
0	C Increasing On	ly
	C Decreasing O	nly
Low Rate Set Point (eu/min)		
	Both Direction	IS
0	C Increasing On	ly .
	C Decreasing O	nly

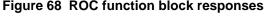
Double click on the function block to access the function block properties dialog box.

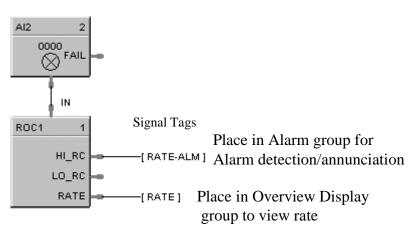
Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

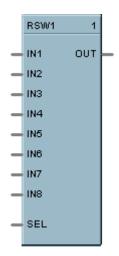

You must configure the ROC function Block parameters to the desired value or selection that matches your operating requirements. Table 62 describes the parameters and the value or selection.


Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Filter Time Constant		0	Filter Time Constant	0.0 to 3.0 minutes
Setpoint Limits	High Rate	1	High Rate of Change setpoint	0 (off) to 99999.9 eu/min
	Low Rate	2	Low Rate of Change setpoint	0 (off) to 99999.9 eu/min
Direction Rate High		3	High Rate Direction	Click on radio button to
			Both	select
			 Increasing only 	
			Decreasing only	
Direction Rate Low		4	Low Rate Direction	Click on radio button to
			Both	select
			 Increasing only 	
			Decreasing only	
Hysteresis		5	Hysteresis	0-999


Table 62 ROC configuration parameters

Example

Figure 68 illustrates various responses for the Rate Of Change Function Block. You can also use the ROC block to alarm if Rate exceeds the Preset Setpoint Limit.



RSW Function Block

Description

The **RSW** label stands for **Rotary Switch**. This block is part of the *Signal Selectors* category. It looks like this graphically on the Control Builder.

Function

The single output value is selected from up to 8 analog inputs by a number of from 1 to 8.

ATTENTION

Numbers less than one select input one as the output. Numbers greater than eight select Input 8 as the output.

Input

IN1 = Input 1 IN2 = Input 2 IN3 = Input 3 IN4 = Input 4 IN5 = Input 5 IN6 = Input 6 IN7 = Input 7 IN8 = Input 8 SEL = Selects Input # to Output

Output

OUT = Output Value

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 70 shows how a RSW function block works. It selects an output value from up to 8 analog values or number inputs.

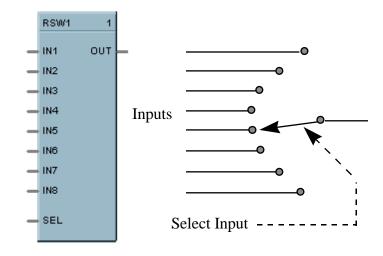
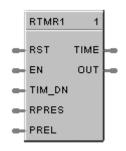



Figure 70 RSW function block example

RTMR Function Block

Description

The **RTMR** label stands for **Resettable Timer**. This block is part of the *Counters/Timers* category. It looks like this graphically on the Control Builder.

Function

The Resettable Timer block has the following attributes:

- Provides increasing or decreasing timing base on an enable input.
- Increasing time from 0 or preload value.
- Decreasing time from preset or preload value.
- Increasing time provides digital output upon reaching Preset
- · Decreasing time provides digital output upon reaching zero
- Reset input sets increasing timer to zero.
- Reset input sets decreasing timer to preset value.
- Preset value may be internal, or remote via a dedicated input
- Inc./Dec. selection is via digital input.

Inputs

 $\mathbf{RST} = \mathbf{Off}$ to On transition, Reset

EN = ENABLE ON = run; timer is counting OFF = Timer is stopped; output (TIMER) held at last value

TIM_DN = ON (time down); OFF (time up)

RPRES = Remote Preset (0.0 – 99999.9) If *Time-up*, RPRES represents **Stop** value in seconds If *Time -down*, RPRES represents **Start** value in seconds

PREL = Preload (0.0 – 999999.9)
If Time-up, PREL represents Start value in seconds
If Time-down, PREL represents Start value in seconds

Outputs

TIME = current value of time in seconds

OUT = Output (Digital) turned ON when Preset value is reached or time reaches 0, depending on TIMDN input status

Block properties

Resettable Timer Configuration - RTMR 1	×
┌─ Preset	<u> </u>
Use Remote 💿	1
Use Local C> 0	
Use Preload	
YES	1
C NO. Use default (0 seccond)	10
Cancel	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the RTMR function Block parameters to the desired value or selection that matches your operating requirements. Table 63 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Presets	Local Preset	0	Local Preset	Click Radio Button to select Enter a value in the field 1 to 99999
Remote Preset		1	ON = use remote preset	Click on radio button to select
Use Preload		2	YES = use external preload rather than zero for starting or stopping NO = Use default (0 second)	Click on radio button to select

Table 63 RTMR configuration parameter	Table 63	ble 63 RTMR	configuration	parameters
---------------------------------------	----------	-------------	---------------	------------

Timing diagram

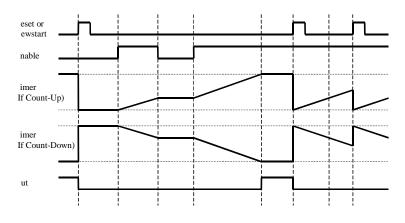
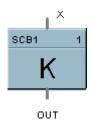



Figure 71 Timing diagram for resettable timer

SCB Function Block

Description

The **SCB** label stands for **Scale and Bias**. This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Multiplies an analog input value (X) by a scaling constant (K) and adds Bias to it.

• OUT = (K * X) + BIAS

Input

 $\mathbf{X} = Analog Value$

Output

OUT = Modified Analog Value

Block properties

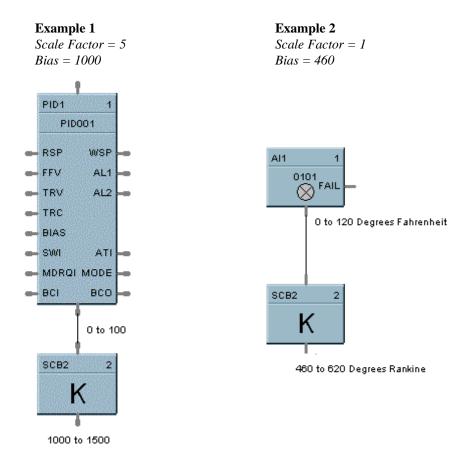
Scale and Bias		×
Block 1		ОК
Order 1		Cancel
Scale Factor	1	
Bias	0	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters


You must configure the SCB function Block parameters to the desired value or selection that matches your operating requirements. Table 64 describes the parameters and the value or selection.

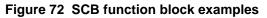
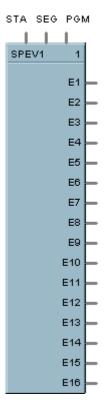

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
	Scale Factor	0	K - Multiplier (scaling) constant	-99999 to 99999
	Bias	1	Bias Constant - is used to compensate the input for drift of an input value due to deterioration of a sensor, or constant offset to an input.	–999999 to 99999

Table 64 SCB configuration parameters

Example

Figure 72 shows function block diagrams using a SCB function block.



SPEV Function Block

Description

The **SPEV** label stands for **Setpoint Programming Events**. This block is part of the *Setpoint Program* category. It looks like this graphically on the Control Builder.

Function

Sets up to sixteen digital event outputs that may be ON or OFF on a per segment basis. Inputs include program number, segment number, and program state (READY, RUN, HOLD, GHOLD, STOP) from setpoint program block.

- If Program Number (PGM) = 0, Segment Number (SEG) = 0, or Program State (STA) is RESET; then: E1 to E16 = OFF.
- Otherwise, **E1 to E16** = as specified in program (PGM), segment (SEG).

Inputs

PGM = Profile number (1 to 70).

SEG = Segment number (1 to 50).

STA = Program State (Ready, Run, Hold, Ghold, Stop).

ATTENTION

SPEV inputs must be connected directly to corresponding outputs of SPP (Setpoint Program) or SPS (Setpoint Scheduler) block.

In Stop state, events stay in the state defined in the last segment.

Outputs

E1 = Digital signal - segment event 1 E2 = Digital signal - segment event 2 E3 = Digital signal - segment event 3 E4 = Digital signal - segment event 4 E5 = Digital signal - segment event 5 = Digital signal - segment event 6 **E6** E7 = Digital signal - segment event 7 **E8** = Digital signal - segment event 8 E9 = Digital signal - segment event 9 **E10** = Digital signal - segment event 10 **E11** = Digital signal - segment event 11 **E12** = Digital signal - segment event 12 **E13** = Digital signal - segment event 13 **E14** = Digital signal - segment event 14 **E15** = Digital signal - segment event 15 **E16** = Digital signal - segment event 16

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 73 shows a function block diagram using a SPEV function block to provide event outputs for a setpoint programmer.

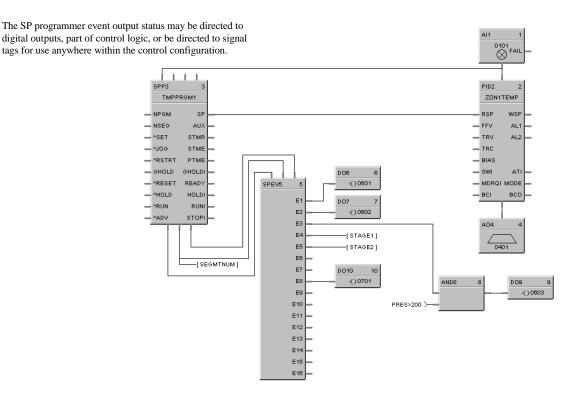
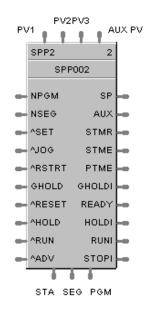



Figure 73 SPEV function block example

SPP Function Block

Description

The **SPP** label stands for **Setpoint Programmer**. This block is part of the *Setpoint Program* category. It looks like this graphically on the Control Builder.

Function

Runs a setpoint ramp/soak program that produces a setpoint output on a time-based profile that is loaded into the block. Up to 4 SPP blocks may be included in a system configuration. A single profile may be from 2 to 50 segments in length. Up to 70 profiles are stored in the controller's memory. Each segment of the profile may be a ramp or soak except the last segment must be a soak.

In addition to the main ramp and soak output value, a second (AUX) analog value is available for each step of the program. This output is a fixed soak value that may be used to provide a setpoint value for a secondary control loop in the process. [For example, see *Example 4 - Using the setpoint programmer AUX output (page 235)*.]

A Setpoint guarantee function is provided that holds the program if a process variable exceeds a predefined deviation from setpoint. Selections allow setpoint guarantee to be active for the entire program, for soak segments only, or for user specified segments, or for no segments. [For example, see *Example 1 - PID with setpoint programmer and guaranteed soak (page 232).*]

Up to 3 Process Variables may be configured as inputs to the block for setpoint guarantee.

Input

PV1	=	Process Variable #1 value in engineering units, for deviation check.
PV2	=	Process Variable #2 value in engineering units, for deviation check.
PV3	=	Process Variable #3 value in engineering units, for deviation check.
Aux PV	=	Aux PV for Aux PV Display.
NPGM	=	New profile number (1 to 70). See ATTENTION.

NSEG	=	New start segment number (1 to 99). When connected, it is used in conjunction with the SET input of the block to set the current segment of the profile to the value of NSEG. <i>See ATTENTION</i> .
^SET	=	Pulse input to load NPGM and NSEG numbers.
^JOG	=	Pulse input to Jog to a predefined segment.
RSTRT	=	Pulse input for restart action after power interruption [For example, see <i>Example 5 - Controlled Restart after Power Loss (page 236)</i> .]
GHOLD	=	Guaranteed soak hold - changes program state from RUN to GHOLD when turned ON and GHOLD to run when OFF.
^RESET	=	Pulse input RESETS program, when turned ON.*
^HOLD	=	Pulse input puts program in HOLD, when turned ON. Run needed to restart.
^RUN	=	Pulse input puts program in RUN, when turned ON; except when program is in GHOLD state.
^ADV	=	Pulse Input for advance of segment.

*For example, see Example 3 - Alternate methods for actuating SP programmer START/HOLD/RESET functions (page 234).

ATTENTION

When connected to variables, it is not necessary to pulse input on SET to accomplish the program or segment load function. In this case, changes to the value of the variables will be automatically detected by the block.

If either or both NPGM and NSEG are connected directly to analog variables and that analog variable should change (for example: via a recipe load), then the Setpoint Programmer block will immediately use the new value internally.

If NPGM or NSEG is connected to any other function type then their values are loaded into the SP Programmer only when ^SET goes through a positive transition.

Output

SP	=	Programmed setpoint value in engineering units
AUX	=	Second non-ramping auxiliary setpoint output in engineering units. [For example, see <i>Example 4 - Using the setpoint programmer AUX output (page 235).</i>]
STMR	=	Time Remaining in current segment - in minutes.
STME	=	Time Elapsed in current segment - in minutes.
PTME	=	Time Elapsed in program - in minutes
GHOLDI	[=	Guaranteed soak hold indication - turns on if PV is outside guaranteed soak band and Guaranteed Soak is enabled.
READY	=	Program Reset state indication
HOLDI	=	Program Hold state indication
RUNI	=	Program Run state indication
STOPI	=	Program Stop indication (Program Complete)

- **PGM** = Current Profile Number (1 to 70) connect to PGM input on SPEV block.
- **SEG** = Current Segment Number (1 to 50) connect to SEG input on SPEV block.
- **STA** = Current program state (RESET, HOLD, RUN, GHOLD, STOP). Connected to STA input of the SPEV block

ATTENTION

The program states are:

- 0 = Until block is first executed after power up
- 1 = Reset
- 2 = Hold
- 3 = Run
- 4 = GHold
- 5 = Stop

TIP

- If the first step of a profile is a ramp, the program will start the ramp from the value of PV Input 1. If the first step of a profile is a soak, the program will start from the soak value. If consistent starting values are required, begin all profiles with a soak.
- The PV inputs are used to determine PV-SP deviation for guaranteed soak segments.
- Valid program numbers begin with 1. Valid segment numbers begin with 1.
- The GHOLD output is not affected by the status of the GHOLD input.
- The RST, HLD, RUN, JOG, ADV, SET, RESTART inputs are activated only when the respective input changes from OFF to ON. A maintained ON input has no different affect than a pulsed ON input (that is, it has no effect until it turns OFF and then back ON again).
- The program may be changed (with some exceptions) from the current state to a new state by the operator as well as by inputs to the SPP block. Table 65 lists the resulting states.
- Concerning changing program state, if more than one function block input is on in the same execution cycle, RESET has priority over HOLD and RUN, and GHOLD has priority over RUN.
- Also, function block inputs will override inputs from the Operator Panel that occur during the same execution cycle. And finally, state changes from the Operator Panel are processed on the basis of the "last change wins."
- At the beginning of a segment, STME will be 0 for one execution cycle to permit start of segment detection by other blocks.
- At the end of a segment, STMR will be 0 for one execution cycle to permit end of segment detection by other blocks.
- If RESTART is On, the block will use PV1 as a starting value and ramp at Restart Rate back to the last SP value, then complete the remaining portion of the segment. Restart Rate is a property of the profile (program)
- "Fastforward" (i.e. Verify) is initiated through the operator interface. It is not an input pin. Fastforward is a way to check for proper functioning of the profile's events and outputs, without having to wait for the profile to execute at its normal speed. When FASTFORWARD is ON, the program will run at a speed 60 times faster. When FASTFORWARD is OFF, the program will run at normal speed.

Input	Current State				
	RESET	HOLD	RUN	GHOLD	STOP
RESET	RESET	RESET	RUN	RESET	RESET
HOLD	HOLD	HOLD	HOLD	HOLD	STOP
RUN	RUN	RUN	RUN	GHOLD	STOP
GHOLD	RESET	HOLD	GHOLD	GHOLD	STOP

Table 65 SPP inputs and current state

Restart scenario options

Table 66 is a list of Restart Scenario options for the Setpoint Program.

Table 66 Restart scenario options

1	No Action taken	Program will start at the point where it was prior to power down.
2	Use the Restart feature of the Setpoint Programmer with a configurable Ramp Rate.	This feature will use the PV (connected to PV1) as the initial starting point for the Setpoint and will use a configurable ramp rate for the profile. When the temperature gets to the original Setpoint prior to power down, the program will continue. <i>See Figure 78, Scenario A.</i>
3	Use the Restart feature of the Setpoint Programmer with a configurable Ramp Rate and use a compare function so that the restart will apply only after a certain time.	You may gate this Restart input to the programmer to only apply after a certain time off and/or a certain segment if desired using Compare function blocks. <i>See Figure 78, Scenario B.</i>

ATTENTION

Be sure to configure the Restart Ramp Rate when a controlled restart is being configured. If not the default value of 0 will cause the programmer to freeze.

Block properties

Set Point Programmer Prop	erties - Block 1	×
- Block		
Tag Name	SPP001	
Descriptor		
- Display		
Decimal places	0	Failsafe SP
SP Units		
Aux Deciimal Places	0	OK Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the SPP function Block parameters to the desired value or selection that matches your operating requirements. Table 67 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Tag Name	N/A	8 character tag name	
	Descriptor	N/A	Block descriptor	
Display Decimal Places		N/A	Number of places to display after the decimal point	0-5
	SP Units		Engineering unit descriptor	4 Characters
	Aux Decimal Places	N/A	Number of places to display after the decimal point	4 Characters
Failsafe SP	Failsafe Setpoint	0	Failsafe Setpoint Value	–9999 to 9999 Engineering Units

Table 67 SPP configuration parameters

Example 1 - PID with setpoint programmer and guaranteed soak

PID with Set Point Programmer & Guaranteed Soak Guaranteed Soak is configured as part of the SET POINT Guar. Soak PROFILE configuration using the Control Builder Software or Deviation Soak Hi from the UDC 800 Operator Interface, Set Point profile EDIT SP Band /DETAIL display. This can be applied to all soaks, selected Guar Soak Lo ----soaks or all segments. This example uses the loop PV as the deviation check input vs. the SP output. The user has the option of using 2 more Up to 3 Deviation Check Inputs 0101 EAL \otimes PV's for expanding the deviation check requiring all inputs to be within the band before the Hold is released. Edit Set Point Profile × Number Name Eng. Units: Time Units Ramp Type: PV2 PV3 AuxPV PV1 PROG 1 DegF Rate Minutes 1 - 1 Guar. Soak Type: Guar. Soak Hi: Guar. Soak Lo: SPP3 PID2 4 Per Segment 10.000000 10.000000 SPP003 ZON1TEMP Segment Type Soak Value Events NPGM SP - RSP W/SE **⊡** 1 □ 2 **₽**3 **□**4 NSEG **FEV** ALIX AL1 ○ Ramp Time/Rate ASET TRV STMR AL2 **E**15 $\mathbf{\nabla}$ □7 □8 6 80 🔽 Guar. Soak ON AIDG STME TRC Aux. Out Value **E** 9 ^RSTRT PTME BIAS Apply Ο 🗌 13 🔲 14 🔲 15 🔲 16 GHOLD GHOLDI SWI ATI **^RESET** READY MDRQI MODE Ramp/Soak Aux. Out Value Time/Rate Value AHOLD. HOLDI BCI BCO 100.000000 0.000000 1. Ramp 100.000000 Add ARIIN RUN 50 00000 0 00000 ADV STOP Insert Delete A04 Close 0401

Figure 74 PID with setpoint programmer and guaranteed soak

Example 2 - PID with setpoint programmer and event outputs

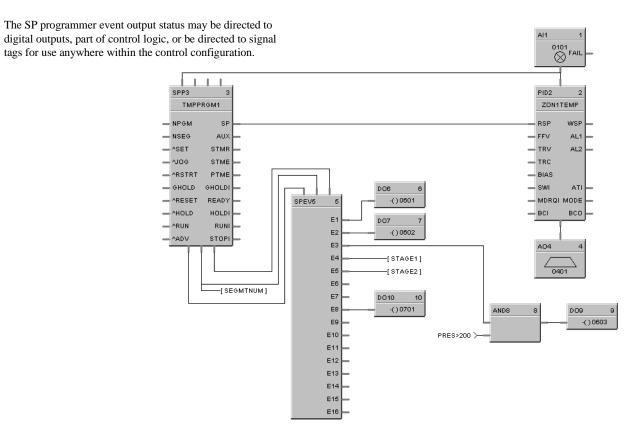
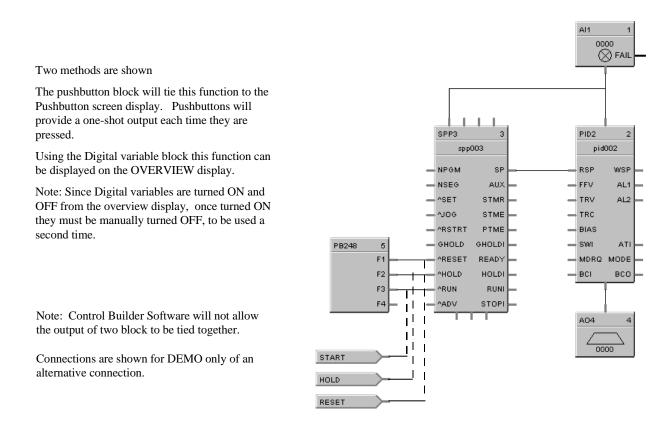



Figure 75 PID with setpoint programmer and event outputs

Example 3 - Alternate methods for actuating SP programmer START/HOLD/RESET functions

Figure 76 Alternate methods for actuating SP programmer START/HOLD/RESET functions

AI14

PID12

RSF WSP

FEV

TRV

TRC

SWA MDRQ MODE

BCI

A016

Z_____

- BIAS

PRESSURE

11

AL1

AL2

AT

BCO

13

AI13

PID11

RSP WSF

FEV

TRV

TRC

BIAS

Stat

BCI

A015

0000

MDRQ MODE

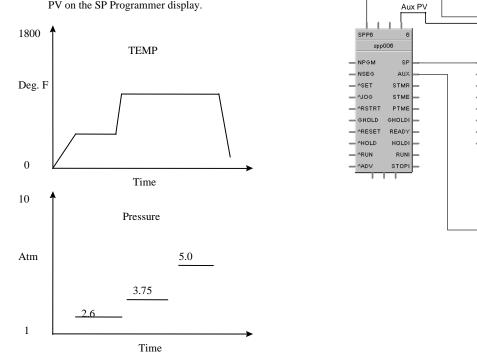
TEMP

AL

AL2

AT

всс

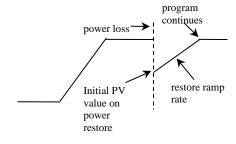

14

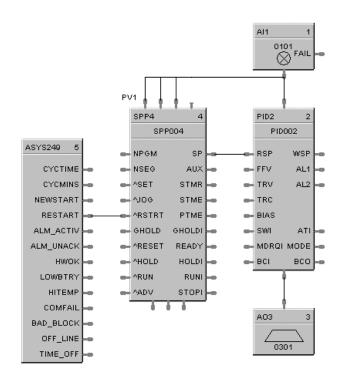
12

‱ ⊗FAIL

Example 4 - Using the setpoint programmer AUX output

The Auxiliary output of the Set Point Programmer (SPP) block can be used to drive the RSP of a secondary PID control block on a level basis. This precludes the use of another SPP block. A different (or same) set point can be configured for each programmer step. This can be used to program pressure, %C, etc. for a second control loop. Both PID loops can be shown on the same SP Programmer display. The PV for the secondary PID block is connected to the top right pin of the SPP block to allow view of the PV on the SP Programmer display.

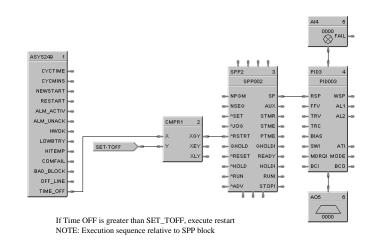


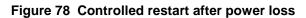


Example 5 - Controlled Restart after Power Loss SCENARIO A

To prevent stress to the work in a furnace on power up after a power loss, you may use the Restart feature of the SP programmer. This feature will use the PV (connected to PV1) as the initial starting point for the Setpoint and will use a configurable ramp rate for the profile. When the temperature gets to the original Setpoint prior to power down, the program will continue. You may gate this Restart input to the programmer to only apply after a certain time off and/or a certain segment if desired using Compare function blocks.

This example uses the System Monitor block to provide a restart pulse to the programmer Restart input after power restore. This will initiate the restart procedure.





SCENARIO B

A System Monitor block output (RESTART) is on for the first scan cycle after a power loss plus TIME_OFF output indicates the time the power has been off. A Compare block can be used to evaluate the time off and cause an output to initiate the restart if greater than a set amount.

Time Off is in seconds.

SPS Function Block

Description

The **SPS** label stands for **Master Setpoint Scheduler**. This block is part of the *Setpoint Scheduler* category. It looks like this graphically on the Control Builder.

	SPS1		
	SPS		
-	NPGM	STMR	L
-	NSEG	STME	-
-	^SET	PTME	┝━
-	PV1	SP1	-
-	PV2	SP2	-
-	PV3	SP3	┝╸
-	PV4	SP4	┝╼
-	PV5	SP5	┝━
-	PV6	SP6	┝━
-	PV7	SP7	-
-	PV8	SP8	-
-	STRQ	STFL	┝
:	STA SE	EG PGN	M

Overview

The objective of the Setpoint Scheduler is to provide a sequence of multiple setpoint outputs (both analog and digital) which are referenced to a common time base. Five setpoint schedule block types will be implemented:

- Master Setpoint Scheduler Block (SPS)
- Auxiliary Setpoint Block [SPSA Function Block (page 241)]
- Digital Event Block [SPEV Function Block (page 224)]
- State Switch Block [STSW Function Block (page 246)]
- State Flags Block [STFL Function Block (page 245)]

A suite of Setpoint Scheduler blocks is comprised of one master Setpoint Block (required) and optionally, one Digital Event, one Auxiliary Setpoint, one State Switch, and/or one State Flags block.

See Figure 79 for a Setpoint Scheduler Function Block Suite.

SPS Block Function

The Master (SPS) block supports up to 8 ramp or soak outputs operating on a common time base. It accepts one PV for each setpoint. Setpoint guarantee is provided for the master (SPS) block setpoints with a single symmetrical value for each setpoint output. You can assign a failsafe value for each setpoint.

Inputs

- **NPGM** = Program Number (when SET is ON)
- **NSEG** = Starting Segment Number (when SET is ON)
- **^SET** = Pulse Input to load PGM and SEG numbers
- **PV1** = 1^{st} Process Variable
- **PV2** = 2^{nd} Process Variable
- **PV3** = 3^{rd} Process Variable
- **PV4** = 4^{th} Process Variable
- **PV5** = 5^{th} Process Variable
- **PV6** = 6^{th} Process Variable
- **PV7** = 7^{th} Process Variable
- **PV8** = 8^{th} Process Variable

STRQ = for connection to the STQR output of the STSW function block. (See Figure 79.) The STSW block encodes discrete inputs to a form that will convey change mode requests from the STSW block:

- 0.0 No Change
- 1.0 Jog State
- 2.0 Guaranteed Hold State
- 4.0 Reset State
- 8.0 Hold State
- 16.0 Run State
- 32.0 Advance state

Outputs

- **PGM** = Current Program Number
- **SEG** = Current Segment number
- **STA** = Program State (Reset, Run, Hold, Ghold, Stop).
- **SP1** = Setpoint #1 Output (EU)
- **SP2** = Setpoint #2 Output (EU)
- **SP3** = Setpoint #3 Output (EU)
- **SP4** = Setpoint #4 Output (EU)
- **SP5** = Setpoint #5 Output (EU)
- **SP6** = Setpoint #6 Output (EU)
- **SP7** = Setpoint #7 Output (EU)
- **SP8** = Setpoint #8 Output (EU)

Block properties

Failsafe Setpoint Editor - SPS 1	X
Block Tag Name	Descriptor
Failsafe Setpoints	
Failsafe Setpoint 1	Failsafe Setpoint 5
Failsafe Setpoint 2	Failsafe Setpoint 6
Failsafe Setpoint 3	Failsafe Setpoint 7
Failsafe Setpoint 4	Failsafe Setpoint 8
	OK Cancel

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the SPS Function Block parameters to the desired value or selection that matches your operating requirements. Table 68 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Tag Name	N/A	8 character tag name	
	Descriptor	N/A	Block descriptor	
Failsafe Setpoints		0	Failsafe Setpoint 1	Value in EU
		1	Failsafe Setpoint 2	Value in EU
		2	Failsafe Setpoint 3	Value in EU
		3	Failsafe Setpoint 4	Value in EU
		4	Failsafe Setpoint 5	Value in EU
		5	Failsafe Setpoint 6	Value in EU
		6	Failsafe Setpoint 7	Value in EU
		7	Failsafe Setpoint 8	Value in EU

Table 68 SPS configuration parameters

Failsafe Value is the initial value when exiting the program mode. Default Failsafe value is 0.0.

Setpoint scheduler example

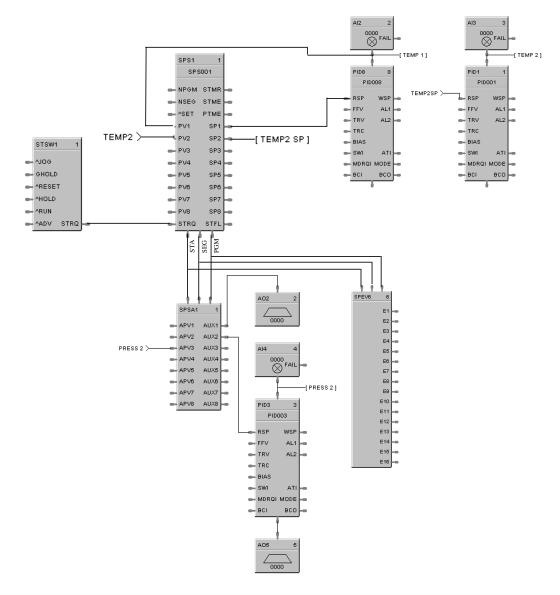
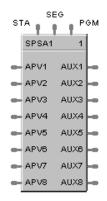



Figure 79 Setpoint scheduler function block suite

SPSA Function Block

Description

The **SPSA** label stands for **Setpoint Scheduler Auxiliary Setpoint Block**. This block is part of the *Setpoint Scheduler* category. It looks like this graphically on the Control Builder.

Function

The eight setpoint outputs of the Auxiliary Setpoint block are set to the current step value. The current step is an input to the block and must be connected to the step output of a Master Scheduler block. At the end of a step, the outputs of the slave block go directly to the next step value. That is, Ramps are not supported.

Inputs

PGM = Current Program Number

SEG = Current Segment number

STA = Program State (Reset, Run, Hold, Ghold, Stop).

 $\begin{array}{l} \textbf{APV1} = 1^{st} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV2} = 2^{nd} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV3} = 3^{rd} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV4} = 4^{th} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV5} = 5^{th} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV6} = 6^{th} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV7} = 7^{th} \text{ Auxiliary Process Variable (EU)} \\ \textbf{APV8} = 8^{th} \text{ Auxiliary Process Variable (EU)} \end{array}$

Outputs

AUX 1 = Auxiliary Output #1 AUX 2 = Auxiliary Output #2 AUX 3 = Auxiliary Output #3 AUX 4 = Auxiliary Output #4 AUX 5 = Auxiliary Output #5 AUX 6 = Auxiliary Output #6 AUX 7 = Auxiliary Output #7 AUX 8 = Auxiliary Output #8

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 79 shows a Function Block Diagram (Setpoint Scheduler Suite) using a SPSA function block.

SQRT Function Block

Description

The **SQRT** label stands for **Square Root**. This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Function

Extracts the square root of the analog input (X) as long as the input is greater than the configured DROPOFF value.

- If X > DROPOFF, then: OUT = square root of X.
- Otherwise, OUT = 0.

Input

 \mathbf{X} = Analog value for square root extraction

Output

OUT = Square Root value

Block properties

Square Root Properties	×
Block	ОК
Number 2	Cancel
Order 2	
Set Drop Off	
Drop Off	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

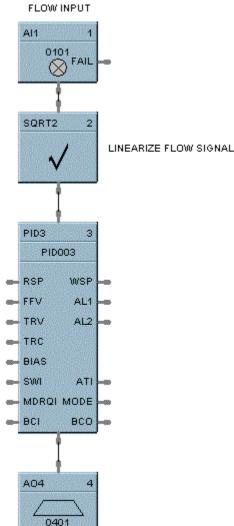
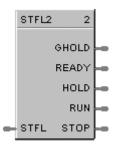

You must configure the SQRT function Block parameters to the desired value or selection that matches your operating requirements. Table 69 describes the parameters and the value or selection.

Table 69 SQRT configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection	
Set Dropoff	Dropoff	0	Minimum Input for Square Root	0 to 99999	
				Must be set at > = 0	

Example

Figure 80 shows a Function Block Diagram using a SQRT function block.


LINEARIZE FLOW SIGNAL

STFL Function Block

Description

The **STFL** label stands for the **Setpoint Scheduler State Flags.** This block is part of the *Setpoint Scheduler* category. It looks like this graphically on the Control Builder.

Function

Connects to Master block (SPS) via dedicated connection and provides logic 1(ON) state digital outputs for Scheduler modes. The State Flags block accepts the encoded master block state as an input and produces digital outputs corresponding to the current value of STFL.

Inputs

STFL = this input is connected to the STFL output of the SPS function block. (See Figure 79.)

Outputs

GHOLD = ON if state = 1.0, else OFF
READY = ON if state = 2.0, else OFF
HOLD = ON if state = 4.0, else OFF
RUN = ON if state = 8.0, else OFF
STOP = ON if state = 16.0, else OFF

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 79 shows a Function Block Diagram (Setpoint Scheduler Suite) using a STFL function block.

STSW Function Block

Description

The **STSW** label stands for the **Setpoint Scheduler State Switch.** This block is part of the *Setpoint Scheduler* category. It looks like this graphically on the Control Builder.

Function

Connects to Master block (SPS) via dedicated connection and accepts digital inputs to cause scheduler mode changes. The State Switch block accepts state request digital inputs and produces an encoded output for input to the master (SPS) block.

Inputs

^JOG =	OFF to ON requests JOG state
GHOLD =	ON = guaranteed Hold State; ON to OFF and previous state was RUN, then return to RUN
	mode.
^RESET =	OFF to ON requests RESET state
^RUN =	OFF to ON requests RUN state
ADV =	OFF to ON requests ADVANCE state
Outputs	

STRQ = for connection to the STQR input of the SPS function block. This block encodes discrete inputs to a form that will convey change mode requests to the SPS block:

- 0.0 No Change
- 1.0 Jog State
- 2.0 Guaranteed Hold State
- 4.0 Reset State
- 8.0 Hold State
- 16.0 Run State
- 32.0 Advance state

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

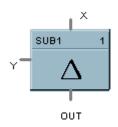

Example

Figure 79 shows a Function Block Diagram (Setpoint Scheduler Suite) using a STSW function block.

SUB Function Block

Description

The **SUB** label stands for the **Subtraction mathematical operation (2 Inputs).** This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Subtracts one input (X) from another (Y) to obtain an output.

• OUT = X - Y

Input

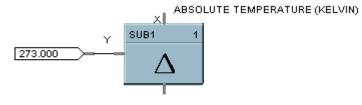
 $\mathbf{X} =$ First analog value

 $\mathbf{Y} = \mathbf{Second}$ analog value

Output

OUT = Calculated Value

Block properties

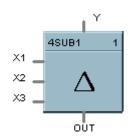

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 81 shows a Function Block Diagram using a SUB function block.


TEMPERATURE (CELSIUS)

4SUB Function Block

Description

The **4SUB** label stands for the **Subtraction mathematical operation (4 Inputs).** This block is part of the *Math* category. It looks like this graphically on the Control Builder.

Function

Subtracts three analog inputs (X1, X2, X3) from Y input to get an output.

Input

- **X1** = First analog input
- X2 = Second analog input
- X3 = Third analog input

Y = Fourth analog input (number to subtract from)

ATTENTION

All four inputs must be connected. Unconnected inputs default to zero.

Output

OUT = Calculated Value

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 82 shows a Function Block Diagram using a 4SUB function block. Y-X1-X2-X3=OUT

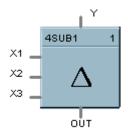
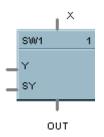



Figure 82 4SUB function block example

SW Function Block

Description

The **SW** label stands for **Analog Switch**. This block is part of the *Signal Selectors* category. It looks like this graphically on the Control Builder.

Function

Selects input Y for output when digital input signal (SY) is ON.

- If SY = ON, then; OUT = Y
- Otherwise, $\mathbf{OUT} = \mathbf{X}$

Input

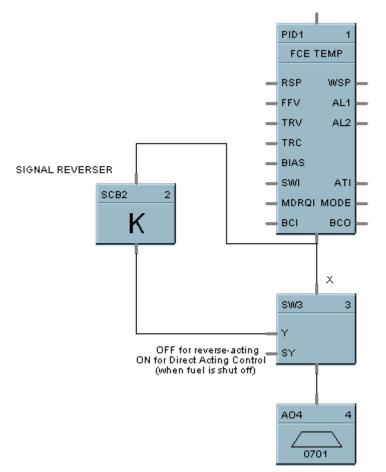
 $\mathbf{X} =$ First analog value

Y = Second analog value

SY = Where ON selects Y command digital signal.

Output

OUT = Selected value


Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 83 shows a Function Block Diagram using an SW function block to select control signal for output.

COMBUSTION AIR CONTROL VALVE

Figure 83 SW function block example

SYNC Function Block

Description

The **SYNC** label stands for **Synchronize**. This block is part of the *Setpoint Program* category. It looks like this graphically on the Control Builder.

Function

Used to synchronize the operation of two setpoint programs given the run. Hold and reset signals from each program.

Input (available for logic control of programmer)

 $\mathbf{RST} = \mathbf{RESET}$ command, when turned ON.

HLD = HOLD command, when turned ON.

 $\mathbf{RUN} = \mathbf{RUN}$ command, when turned ON.

ADV = ADVANCE command, when turned ON

Output

The status of each programmer connected to the output pins of the block are monitored. A change in state of any of the programmers is transferred to the other programmers. This occurs regardless of input pin connections. Use of block inputs is optional.

ATTENTION

Ghold status is not transferred between programmers with this block.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 84 shows a Function Block Diagram using a SYNC function block.

Function: Synchronizes changes in setpoint program state for multiple SPP function blocks when the state of any connected SPP is changed from the Operators Panel or via a remote connection. (Analog and digital I/O blocks required to complete this function are not shown.)

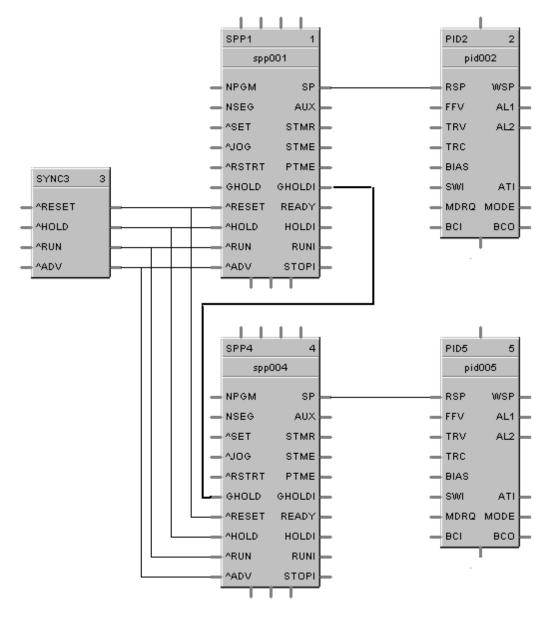
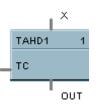



Figure 84 SYNC function block example

TAHD Function Block

Description

The **TAHD** label stands for **Track and Hold.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Provides an output that tracks the value of the input (X), when a digital input signal (TC) is On; or when TC is OFF, holds output at last value of X.

- If TC = ON, then: OUT = X (TRACK)
- If TC = OFF, then: OUT = Last value of X (HOLD)

Input

 \mathbf{TC} = Track command signal, when turned ON. \mathbf{X} = Value to be tracked.

Output

 $\mathbf{OUT} = \text{track}$ and hold value of X

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 85 shows a function block diagram using a TAHD function block to track the Input signal for a PID control loop in conjunction with a digital input.

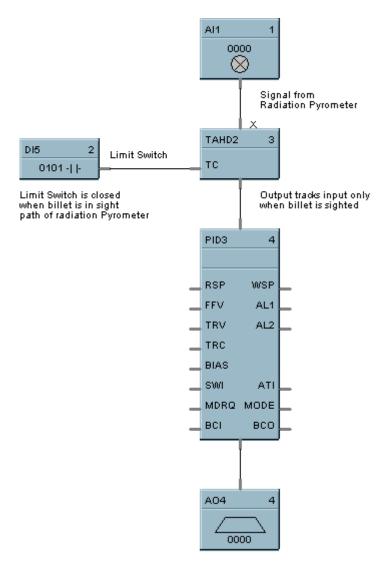
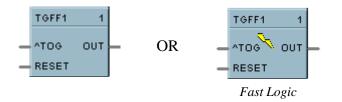



Figure 85 TAHD function block example

TGFF Function Block

Description

The **TGFF** label stands for **Toggle Flip-Flop.** This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Provides an ON state output when a digital input goes from OFF to ON and the previous state of the output was OFF, and an OFF state output when the digital input goes from OFF to ON and the previous state of the output was ON.

- OUT = ON when ^TOG changes from OFF to ON and the previous state of OUT was OFF.
- OUT = OFF when ^TOG changes from OFF to ON and the previous state of OUT was ON.
- Reset sets output to OFF, regardless of current state.

Input

^TOG = Digital Input **RESET** = Digital input ON Input = OFF output

Output

OUT = Digital Output

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Figure 86 shows a Function Block Diagram using a TGFF function block and how to tag the output.

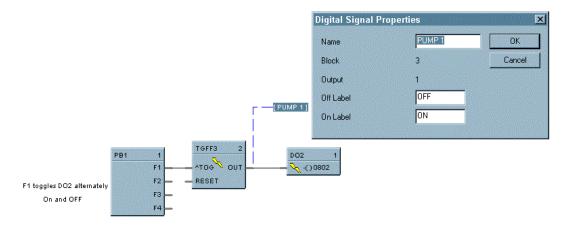
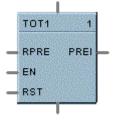



Figure 86 TGFF function block example

TOT Function Block

Description

The **TOT** label stands for **Totalizer**. This block is part of the *Calculations* category. It looks like this graphically on the Control Builder.

Accumulated Value

Function

Integrates an Analog variable using a specified rate. Rate may be in units per second, minute, hour, or day.

A preset is provided to reset the value when a specific quantity has been accumulated and provide a digital status output.

Separate digital enable and reset inputs are provided.

Accumulated value may increment from 0 to preset for increasing totals or decrement from the preset to 0 for decreasing totals.

Inputs

RPRE = Remote Preset Value in Engineering Units

EN = When the enable input is ON, the input value is integrated to a preset value. (Value HOLD when EN = OFF.)

 $\mathbf{RST} = \mathbf{ON}$ resets the output to zero. (Accumulated value set to 0.)

Output

PREI = Digital output, ON when the output = Preset Value. Upon reaching the preset value the digital output is enabled for one scan and the totalizer restarts from 0.

OUT = Accumulated value in engineering units.

Block properties

Totalize Block Properties	×
Block Number 2	OK Cancel
Per Second 🔹	rigger ecreasing O ncreasing O
Preset Use Local ⓒ ······→ 0 Use Remote O	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

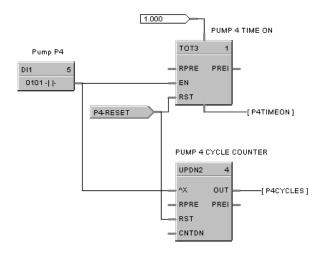
You must configure the TOT function Block parameters to the desired value or selection that matches your operating requirements. Table 70 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order	Read Only. See "Configure" Menu, "Execution Order" to change.
Input Rate	Input Rate	N/A	Input rate	Select: Per Second Per Minute Per Hour Per Day
Use Preset	Use Local	N/A	Local Preset	Click on Radio Button to select and enter value in Local Preset field
		1	Local Preset Value	1 to 999999
	Use Remote	N/A	Remote Preset	Click on Radio Button to select
Preset Trigger	Decreasing	N/A	Select this to decrement from preset down to zero	Click on Radio Button to select
	Increasing	N/A	Select this to accumulate from 0 to preset value	Click on Radio Button to select

Table 70 TOT configuration parameters

Figure 87 shows Function Block Diagrams using a TOT function block.

EXAMPLE 1


In UMC ON Delay timers are not retentive - if the RUN input is logic 0, the timer is reset. A retentive timer has an Enable and a Reset input. As long as the timer is not reset, time will be accumulated when the Enable Input is logic 1 (ON). This permits recording the time a device such as a pump has been on.

This example uses a Totalizer function block as a retentive timer. If a fixed input of 1 is provided to the block using a Numeric Constant, the totalizer will time up to 1 at the input rate selected (per sec, per min., per hr, or per day). For example, if the "per hr" rate were selected, the output would be 1.0 after 1 hour, 2.0 after 2 hours, etc, up to the Preset value.

A counter is shown to count the number of pump cycles (On to OFF transitions).

The P4-RESET Digital Variable is used to reset the timer and counter

EXAMPLE 2 - FLOW TOTALIZATION

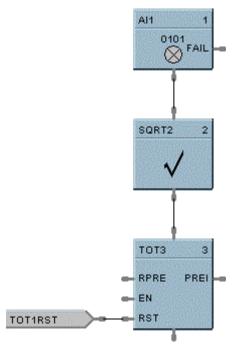


Figure 87 TOT function block examples

TPO Function Block

Description

The **TPO** label stands for **Time Proportional Output.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Proportions the amount of ON time and OFF time of a Digital Output over a user defined cycle time.

- On Time = [cycle time * (IN range lo)] / (range hi range lo)
- OFF Time = cycle time On Time
- If On Time < minimum ON time, then On Time = 0.0
- If OFF Time < minimum OFF time, then OFF Time = 0.0.

Input

Analog Input value in Percent (%)

Block properties

Time Proportioning Ou	itput Prope	rties		×
Block Number Order	2			OK Cancel
Address		Range		
Module	0 1		Range Hi	100
Channel	0 -		Range Lo	0
Cycle Settings (second	ls)			
			Min Off Time	0
Cycle Time	20		Min On Time	0

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the TPO function Block parameters to the desired value or selection that matches your operating requirements. Table 71 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Address	I/O Module		Address of selected I/O module	Enter a value: from 1 to 16
	Channel		Channel on selected I/O Module	Enter a value: from 1 to 4
Range	Range Hi	1	High Range Value	–9999 to 9999 Default = 100
	Range Lo	2	Low Range Value	–9999 to 9999 Default = 0
Cycle Settings	Cycle Time	3	Output Cycle Time	1 to 120 seconds Default = 20
	Min Off Time	4	Minimum OFF time	to 15.0 seconds Default = 0.0
	Min On Time	5	Minimum ON time	to 15.0 seconds Default = 0.0

Table 71 TPO configuration parameters

Figure 88 shows a Function Block Diagram using a TPO function block. Time Proportioning outputs are commonly used for electrically heated applications where regulating the amount of ON time vs. OFF time of a heater is used to control temperature. In the example the TPO output is used to activate a relay output to control a heater.

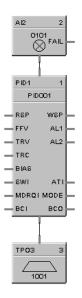
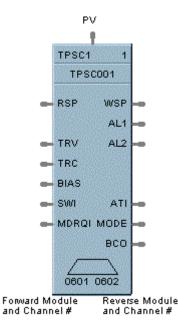



Figure 88 TPO function block example

TPSC (3POS) Function Block

Description

The **TPSC** (**3POS**) label stands for **Three Position Step Control** operation. This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

This block combines a PID controller with 3 position step control output functions to provide motor position control without position sensing. Allows the control of a valve or other actuator having an electric motor driven by two digital output channels; one to move the motor upscale, the other to move it downscale, without a feedback slidewire linked to the motor shaft.

Inputs

PV = Process Variable Analog Input value in Engineering Units

- **RSP** = Remote Setpoint Analog Input value in Engineering Units or Percent
- **TRV** = Output Track value in Percentage (PID Output = TRV Input when TRC = ON.)
- **TRC** = Output Track Command [ON, OFF] (On -Enables TRV) (Mode = Local Override)
- **BIAS** = Remote Bias value for Ratio PID
- **SWI** = Switch Inputs (from SWO on LPSW function block)
 - 0 = No Change
 - 1 = Initiate Autotuning
 - 2 =Change Control Action
 - 4 = Force Bumpless Transfer
 - 8 = Switch to Tune Set 1
 - 16 = Switch to Tune Set 2

MDRQI = External Mode request (typically connected to the MDRQO output of a MDSW function block.

- 0 =No Change
- 1 = Manual Mode Request
- 2 = Auto Mode Request
- 4 = Local Mode Request
- 8 = Remote Mode Request

Outputs

WSP = Working Setpoint in Engineering Units for monitoring

AL1 = Alarm 1 - Digital Signal

AL2 = Alarm 2 - Digital Signal

ATI = Autotune Indicator (ON = Autotune in Progress)

MODE = Loop mode status (typically connected to the Mode Flags block for encoding). Value indicates modes as follows:

- 0.0 RSP AUTO
- 1.0 RSP MAN
- 2.0 RSP Initialization Manual (See ATTENTION)
- 3.0 RSP Local Override (See ATTENTION)
- 4.0 LSP AUTO
- 5.0 LSP MAN
- 6.0 LSP Initialization Manual (See ATTENTION)
- 7.0 LSP Local Override (See ATTENTION)

BCO - Back Calculation Output (for blocks used as Cascade Secondary). This block can *only* be used as a cascade secondary; therefore, no BCI input is provided.

ATTENTION

When a request to change from Auto to manual is received and:

- the request comes from the operator Interface, the request is ignored.
- the request comes from the Mode Switch (MDSW) function block, the request is retained and when leaving the Initialization Mode or Local Override Mode the loop will go to manual.

Block properties

Double click on the function block to access the function block properties dialog box.

Dialog box structure

The TPCS properties dialog box is divided into six tab cards

GENERAL RSP RANGE/LIMIT TUNING ACCUTUNE ALARMS MOTOR

Click on the tab to access the properties for that tab.

GENERAL tab

It looks like this graphically on the Control Builder. Table 72 describes the parameters and the value or selection.

TPS	C Function Block I	Properties		X
G	eneral RSP Rang	je / Limit Tuning	Accutune Alarms Motor	
1	Block			
	Number	2	Tag Name TPSC002	
	Order	2	Descriptor	1947
4	Control		Start / Restart	
1.4.25			Initial mode Man LSP	
2	Direction	Reverse 💌	Power up mode Man LSP 💌	
	SP tracking	None 💌	Power up out Failsafe 💌	
			Failsafe out 0%	
			OK Cance	

 Table 72 General tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Block	Order	N/A	Execution Order	Read Only. See "Configure" Menu, "Execution Order" to change.
	Tag Name	N/A	8 character tag name	
	Descriptor	N/A	Block descriptor	
Control	Direction	N/A	Control Action	DIRECT - Proportional action causes output to increase as process variable increases. REVERSE - Proportional action causes output to decrease as process variable increases.
	SP Tracking	N/A	Setpoint Tracking	None Track PV - When control mode is "manual", local setpoint tracks process variable. Track RSP - When setpoint is "remote setpoint", local setpoint tracks remote setpoint.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Start/Restart	Initial Mode	N/A	Control Mode and Setpoint at NEWSTART Newstart is the first scan cycle following the cold start of the controller	 MAN LSP - Manual control and last local setpoint. AUTO LSP - Automatic control and last local setpoint. AUTO RSP - Automatic control and remote setpoint. Man LSPonly - Manual control and local setpoint only. Auto LSPonly - Automatic control and local setpoint only*. Auto RSPonly - Automatic control and remote setpoint only*. *These modes will override the configured POWER UP MODE.
	Power Up Mode	N/A	Control Mode and Setpoint at power up	 MAN LSP - Manual control and last local setpoint. AM LSP - Same control mode (auto or manual) and last local setpoint. AM LR - Same control mode (auto or manual) and setpoint (local or remote) as at power-down.
	Power Up Out	N/A	Output at Power up	LAST OUT - Same as at power down. FAILSAFE - Failsafe output value.
Failsafe out	Failsafe Output	13	Failsafe Output Value	Selections: 0 % 100 %

RSP tab

àeneral RSF	Range / Limit Tu	ning Accutune Alarms	Motor]	
Remote Se	etpoint Source and Unit	3			
💿 Use F	RSP Input (EU)				
O Use F	RSP Input (%)				
O Use I	.SP2 (EU)				
– Ratio / Bia	is (apply to RSP Input, i	ot LSP2)			
⊙ No R O Use I	atio or Bias .ocal BIAS>	not LSP2) Local Bias valu	ie (EU)	0	
⊙ No R O Use I	atio or Bias	·	ie (EU) Ratio	0	-

It looks like this graphically on the Control Builder. Table 73 describes the parameters and the value or selection.

Table 73 RSP tab configuration parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Remote Setpoint Source and Units	Use RSP Input (EU)	N/A	Use Remote Setpoint in Engineering Units	Click on radio button to select
	Use RSP Input (%)	N/A	Use Remote Setpoint in Percent	Click on radio button to select
	Use LSP2 (EU)	N/A	Use Local Setpoint #2 in Engineering Units	Click on radio button to select
Ratio/Bias (RSP Input Only)	No Ratio or Bias	N/A	No ratio and bias applied to the function block	Click on radio button to select
	Use Local Bias	N/A	Use Bias value selected on Tab	Click on radio button to select Enter value at " Local Bias Value " on tab.
	Use Bias Input	N/A	Use Bias value attached to an input to the block	Click on radio button to select
	Local Bias Value (EU)	38	Local bias value in engineering units	Enter local bias value –99999 to 99999
	Ratio	37	Gain value for Ratio PID	-20 to +20

RANGE/LIMIT tab

It looks like this graphically on the Control Builder. Table 74 describes the parameters and the value or selection.

TPSC Function Block Prop	erties	×
General RSP Range / I	imit Tuning Accutune Alarms Motor	din se
Ranging	Limiting	
PV high range	100. SP high limi	t 100
PV low range	0 SP low limi	t 0
Display	AT Out low limi	t 0
Decimal places	O AT Out High limi	t 100
Units	SP rate down (EU/Min	0
Dev bar range (EU)	100 SP rate up (EU/Min	
	ОК	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Ranging	PV High 3 PV High Range Value Range		-99999 to 99999	
	PV Low Range	4	PV Low Range Value	-99999 to 99999
Display	Decimal Places	N/A	Number of digits after decimal point for display	0-5
	Units	N/A	Engineering units for display	up to 4 characters
	DEV Bar Range (EU)	N/A	Deviation Bar Range on the Operator Interface	-99999 to 99999
Limiting	SP High Limit	10	Setpoint High Limit Value - prevents the local and remote setpoints from going above the value set here.	-99999 to 99999
	SP Low Limit	11	Setpoint Low Limit Value - prevents the local and remote setpoints from going below the value set here.	-99999 to 99999
	Out High Limit	25	Autotuning Output High Limit Value - is the highest value of the output beyond which the motor no longer affects the process.	0 % to 100 %
	Out Low Limit	26	Autotuning Output Low Limit Value - is the lowest value of the output beyond which the motor no longer affects the process.	0 % to 100 %
	SP Rate Down	34	Setpoint Rate Down value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint down to the new one.	0 (off) to 9999 (eu/min)
	SP Rate Up	35	Setpoint Rate Up value - when making a setpoint change, this is the rate at which setpoint will change from the original setpoint up to the new one.	0 (off) to 9999 (eu/min)

Table 74	Range/limit tab	configuration	parameters
----------	-----------------	---------------	------------

TUNING tab

It looks like this graphically on the Control Builder. Table 75 describes the parameters and the value or selection.

TPSC Function Block Properti	es				×
General RSP Range / Limit	Tuning	Accutune	Alarms	Motor]	
Tuning Constants			1		1
	Set 1	Set 2			
Gain: 🔽 🚺	1	1			
Reset Minutes:	50	50			
Rate (Minutes))	0			
				OK	Cancel

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Tuning Constants	Prop Band	0 PB1 or Gain1	Proportional Band (PB) - is the percentage of the range of the measured variable for which a proportional controller will produce a 100 % change in its output.	0.1 to 1000
	or Gain	29 PB2 or Gain2	Gain - is the ratio of output change (%) over the measured variable change (%) that caused it. $G = \frac{100 \%}{PB \%}$ where PB is the Proportional Band (in %)	0.1 % to 1000 % ATTENTION: Enter values for tuning set 1 and tuning set 2 in specified fields.
	Reset Minutes or Repeats per Minute	2 Reset1 or 31 Reset2	RESET (Integral Time) - adjusts the controller's output according to both the size of the deviation (SP-PV) and the time it lasts. The amount of corrective action depends on the value of Gain. The reset adjustment is measured as how many times proportional action is repeated per minute (Repeats/minute) or how many minutes before one repeat of the proportional action occurs (Minutes/repeat).	0.02 to 50.00
	Rate Minutes	1 Rate1 or 30 Rate2	RATE action, in minutes affects the controller's output whenever the deviation is changing; and affects it more when the deviation is changing faster.	0 or 0.1 to 10.00 minutes 0 = OFF

Table 75	Tuning tab	configuration	parameters
		•••·····	

ACCUTUNE tab

It looks like this graphically on the Control Builder. Table 76 describes the parameters and the value or selection.

TPSC Function Block Properties			×
General RSP Range / Limit Tuning	Accutune	Alarms Motor	,8 ⁷
Accutune Type © Disabled © On Demand Enable Fuzzy Overshoot Suppression			
-		OK	Cancel

Table 76 Accutune tab configuration paramet	ers
---	-----

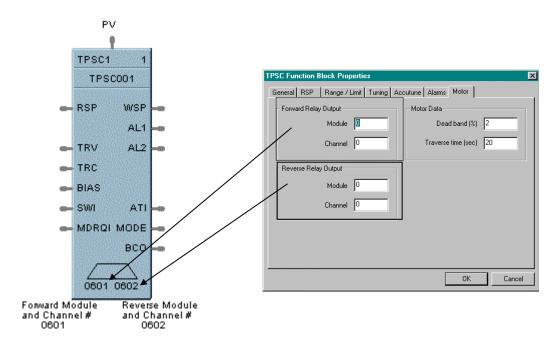
Properties Group	Parameter	Index #	Parameter Description Value or Selectio		
Accutune Type	Disabled	N/A	Disables Accutune	Click on radio button to select	
	On Demand	N/A	When initiated, the controller will start controlling to the setpoint while it identifies the process, calculates the tuning constants, and begins TPSC control with the correct tuning parameters.	Click on radio button to select	
Enable Fuzzy Overshoot Suppression		27	Fuzzy Overshoot Suppression minimizes overshoot after a setpoint change or a process disturbance.		
Click on block to select			The fuzzy logic observes the speed and direction of the PV signal as it approaches the setpoint and temporarily modifies the internal controller response action as necessary to avoid an overshoot.		
			There is no change to the TPSC algorithm, and the fuzzy log does not alter the TPSC tuning parameters.		
			This feature can be independently Enabled or Disabled as required by the application to work with "TUNE" On-Demand tuning.		

ALARMS tab

It looks like this graphically on the Control Builder. Table 77 describes the parameters and the value or selection.

TPSC Function Block Properties			×
General RSP Range / Limit Tuning Accutune	Alarms	Motor	
Alarm 1			
Setpoint 1	Туре	No Alarm 💌	
Setpoint 2 0	Туре	No Alarm 💌	
Alarm 2			
Setpoint 1 0	Туре	No Alarm 💌	
Setpoint 2 0	Туре	No Alarm 💌	
Hysteresis (%)			
		OK Canc	el

Properties Group	Parameter	Index #	Parameter Description	Value c	or Selection
Alarm 1 Setpoint 1 1	14	Alarm 1 Setpoint 1 Value - this is the value at which	–999999 to 99999 in Engineering Units		
			you want the alarm type chose below to activate	Within the PV i type is PV or S	ange when alarm P
				Within PV spar is DEV	n when alarm type
				–5 % to 105 % output.	when alarm type is
	Туре	N/A	Alarm 1 Setpoint 1 Type -	Selections:	
			select what you want Alarm 1 Setpoint 1 to	NO ALARM	
			represent.	PV_HIGH	High PV Alarm
		PV_LOW	Low PV Alarm		
				DEV_HIGH	High Deviation alarm
				DEV_LOW	Low Deviation alarm
				SP_HIGH	High Setpoint alarm
				SP_LOW	Low Setpoint alarm
				OUT_HIGH	High Output alarm
				OUT_LOW	Low Output alarm
	Setpoint 2	15	Alarm 1 Setpoint 2 Value	Same as Alarr	n 1 Setpoint 1
	Туре	N/A	Alarm 1 Setpoint 2 Type	Same as Alarm 1 Setpoint 1	
Alarm 2	Setpoint 1	16	Alarm 2 Setpoint 1 Value	Same as Alarm 1 Setpoint 1	
	Туре	N/A	Alarm 2 Setpoint 1 Type	Same as Alarr	n 1 Setpoint 1
	Setpoint 2	17	Alarm 2 Setpoint 2 Value	Same as Alarm 1 Setpoint 1	
	Туре	N/A	Alarm 2 Setpoint 2 Type	Same as Alarr	n 1 Setpoint 1
Alarm Hysteresis	%	22	Alarm Hysteresis in %	0 % to 5 %	

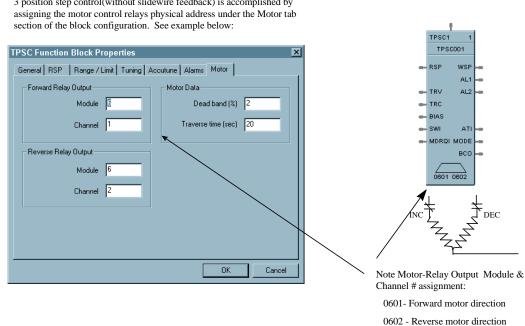

Table 77	Alarms tab	configuration	parameters
----------	------------	---------------	------------

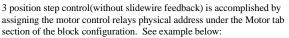
MOTOR tab

It looks like this graphically on the Control Builder. Three Position Step control is accomplished by assigning the motor control relays physical address under this tab. Table 78 describes the parameters and the value or selection.

TPSC Function Block Prop	erties		×
General RSP Range / Li	imit Tuning Accutun	e Alarms Motor	
Forward Relay Output Module	0. M	otor Data Dead band (%)	2
Channel	0	Traverse time (sec)	20
Reverse Relay Output			
Module	0		
Channel	0		
		OK	Cancel

Example

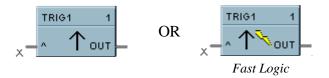

ATTENTION


TPSC output addresses are not checked for redundant assignment or mismatch with controller hardware; therefore, use caution to insure unique address and correct I/O module.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Forward Relay Output	Module	41	Module Number for Forward Motor Direction	1 to 16
	Channel		Channel Number for Forward Motor Direction	1 to 4
Reverse Relay Output	Module	42	Module Number for Reverse Motor Direction	1 to 16
	Channel		Channel Number for Reverse Motor Direction	1 to 4
Motor Data	Deadband (%)	43	Deadband is an adjustable gap in which neither output operates	0.5 % to 5 %
	Traverse Time (sec)	N/A	Motor Travel Time - the time it takes the motor to travel from 0 % to 100 %	0 to 1800 seconds

Table 78 M	Motor tab	configuration	parameters
------------	-----------	---------------	------------

Figure 89 shows a Function Block Diagram using a TPSC function block



TRIG Function Block

Description

The **TRIG** label stands for **Trigger or "One Shot"** operation. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns a Logic output (OUT) ON for one logic scan cycle, when a logic input (X) goes from OFF to ON.

- If X = ON and previous value of X was OFF, then: OUT = ON (one scan)
- Otherwise, OUT = OFF

Input

 $\mathbf{X} = \text{Trigger command signal}$

Output

OUT = triggered pulse

ATTENTION

The duration of the logic pulse output is one function block execution cycle. The duration of the fast logic pulse output is 100 ms, or the fast logic cycle time.

Block properties

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 90 shows a Function Block Diagram using a TRIG function block. An OFF delay timer block output is ON as long as the RST input is logic HI (ON). It can be used for time duration but must be triggered by an ON to OFF transition on the Reset input. This can be accomplished using **Trigger blocks (TRIG)** to create one-shot pulses which last one scan cycle. The fast logic trigger pulse will last 100 ms. while the normal logic trigger pulse will last the complete scan cycle for analog blocks. Use according to application need. A Periodic timer output pulse may also be used to start the timer for the OFF delay.

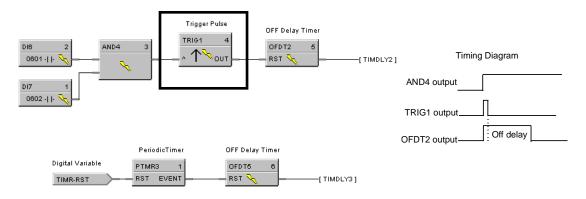
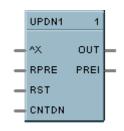



Figure 90 TRIG function block example

UPDN Function Block

Description

The **UPDN** label stands for **UP/DOWN Counter.** This block is part of the *Counters/Timers* category. It looks like this graphically on the Control Builder.

Function

The output counts the number of rising edge logic transactions on the input to the block up to a preset value (RPRE or LPRE). When the preset value is reached, a logic output (PREI) is enabled until a Reset input (RST) resets the block. Value may be set to increase to the preset value or decrease from the preset value.

Inputs

X = Positive Edge Detect Count Input
 RPRE = Remote Preset
 RST = ON resets the count
 CNTDN = ON counts down

Outputs

OUT = Output **PREI** = Preset Indicator

Block properties

Up/Down C	ounter Properties	×
Block	Number 2 Order 2	OK Cancel
- Presets	Local Preset [Use Remote Prese	et 🗖

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the UPDN function Block parameters to the desired value or selection that matches your operating requirements. Table 79 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Presets	Local Preset	0	Local Preset	1 to 99999
Use Remote Preset		1	On selects remote preset	Click on Box to select

Table 79 Up/down configuration parameters

Example

Figure 91 shows a Function Block Diagram using a UPDN function block. This example uses a Totalizer function block as a retentive timer. If a fixed input of 1 is provided to the block using a Numeric Constant, the totalizer will time up to 1 at the input rate selected (per sec, per min., per hr, or per day). For example, if the "per hr" rate were selected, the output would be 1.0 after 1 hour, 2.0 after 2 hours, etc, up to the Preset value.

A counter is shown to count the number of pump cycles (On to OFF transitions).

The P4-RESET Digital Variable is used to reset the timer and counter

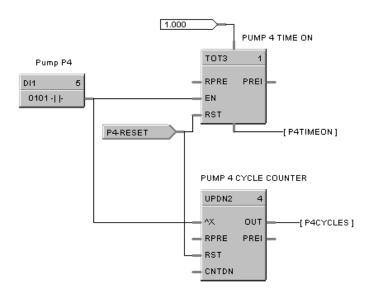
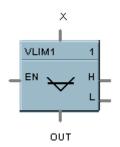



Figure 91 UPDN function block example

VLIM Function Block

Description

The **VLIM** label stands for **Velocity** (**Rate**) **Limiter.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Limits the rate at which an analog input value (X) can change, when a digital input signal (EN) is ON. Individual rate of change limits are configured for an increasing and a decreasing X, respectively.

Separate digital status outputs indicate when High (H) or Low (L) rate limits are active.

- If EN = OFF or system state = NEWSTART*, then:
 OUT = X,
 L = OFF,
 - H = OFF.
- If EN = ON and OUT < X, then: OUT moves toward X at Increasing RATE limit, L = OFF, H = ON until OUT = X.
- If EN = ON and OUT > X, then:
 - OUT moves toward X at Decreasing RATE, L = ON until OUT = X, H = OFF.

* Newstart is the first scan cycle following the cold start of the controller.

Input

X = Analog Value (Primary Input)

EN = Enable Input command

Output

OUT = Rate Limited Input Value

- $\mathbf{H} =$ High Rate alarm indication
- $\mathbf{L} =$ Low Rate alarm indication

Block properties

Velocity Limiter Propert	ies	1	×
Block Number	2	ОК	
Order	2	Cancel	J
- Rate Limits			1
Increasing	0	EU/min	1.4.1.
Decreasing	0	EU/min	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

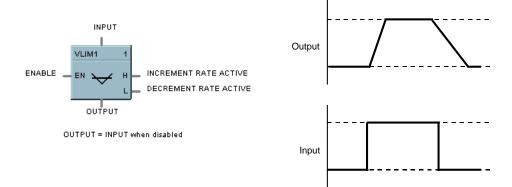
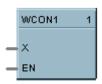

You must configure the VLIM function Block parameters to the desired value or selection that matches your operating requirements. Table 80 describes the parameters and the value or selection.

Table 80 VLIM Configuration Parameters

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Limits	Increase Rate Limit	0	Limits the <i>increasing</i> rate at which the analog input value can change	0 to 99999 (eu/min)
	Decrease Rate Limit	1	Limits the <i>decreasing</i> rate at which the analog input value can change	0 to 99999 (eu/min)

Example

Figure 92 shows a VLIM function block that limits the increasing or decreasing rate at which the output can change based on user specified limits when the Enable input is ON (1).



WCON Function Block

Description

The **WCON** label stands for **Write Constant**. This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Writes the numerical value of selected configuration parameter to a given control block. Select the index number of the required parameter from the specific function block reference data and enter it in the appropriate field in the "Write Constant Properties" dialog box.

• If EN is ON, change the selected parameter to the value of X.

Input

X = Value to be written (invalid for parameters of type other than BOOL or REAL)

EN = Enable command

Block properties

Write Constant		×
Block		ОК
	Number 2 Order 2	Cancel
Target Block -	Block 0 Index 0	

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the WCON function Block parameters to the desired value or selection that matches your operating requirements. Table 81 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Write Parameters	Block Number	N/A	Number of control block that contains desired configuration parameter	1 to 250
	Parameter Index #	N/A	Index number of configuration parameter to be modified	Select the index number of the required parameter from the specific function block reference data

Table 81	Write	configuration data

Example

Figure 93 shows a Function Block Diagram using a WCON function block to write a new On Delay Timer, time delay value.

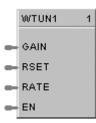



Figure 93 WCON function block example

WTUN Function Block

Description

The **WTUN** label stands for **Write Tuning Constants.** This block is part of the *Loops* category. It looks like this graphically on the Control Builder.

Function

Writes the numerical value of Gain, Rate, and Reset to a Target PID, TPSC, or CARB block without any operator interaction.

Select the target block number from the specific function block diagram and enter it in the appropriate field in the "Write Tune Constants" dialog box.

• If EN is ON, then the tuning constants are set to the Gain, Rate, and Reset input values..

ATTENTION

Invalid for block number whose type is other than PID, CARB, or TPSC.

If the target block is in AUTO mode, tuning parameter change will cause a bump in the output.

If any input value is "out-of-range", no values will be written.

Input

GAIN = Value for GAIN tuning constant RSET = Value for RESET tuning constant (Integration time) RATE = Value for RATE tuning constant (Derivative time) EN = Enable command

ATTENTION

The three analog inputs can originate as recipe items or be calculated for adaptive control.

Target block number

ts - ₩T	Ň
	12
Cancel	

Double click on the function block to access the "Target Block Number" dialog box.

Enter the Target Block number in the appropriate field. Selections are from 1 to 248.

Example

Figure 94 shows a Function Block Diagram using a WTUN function block to write Tuning Parameters to a PID function block.

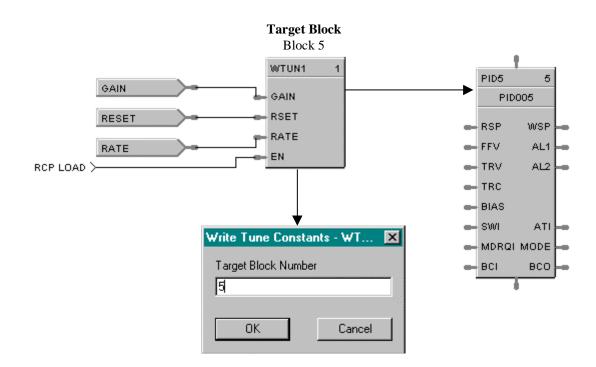
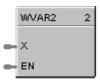



Figure 94 WTUN function block example

WVAR Function Block

Description

The **WVAR** label stands for **Write Variable.** This block is part of the *Auxiliary* category. It looks like this graphically on the Control Builder.

Function

Writes a new value to a selected Variable number.

Select the target variable number from the specific function block reference data and enter it in the appropriate field in the "Write Variable Number" dialog box.

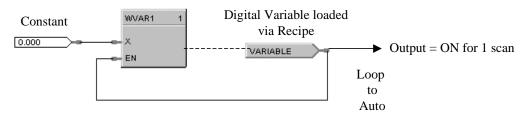
• If EN is ON, then the Variable selected is set to the value of X.(For example: X = a constant value)

Inputs

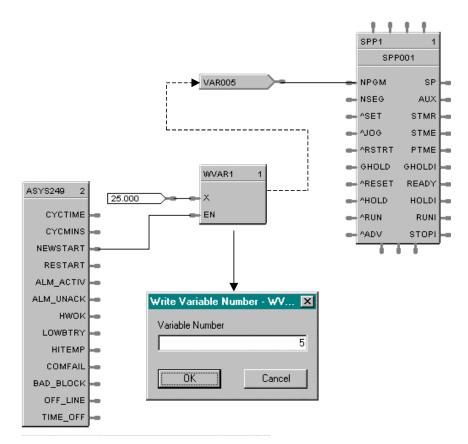
 $\mathbf{X} =$ Value to be written to the selected variable

 $\mathbf{EN} = \mathbf{Enable} \ \mathbf{command}$

Target write variable number


Write Variable Numl	ber - WV	×
Variable Number		
1		0
2		ent.
UK J	Cancel	

Double click on the function block to access the "Write Variable Number" dialog box.


Enter the Target Variable number in the appropriate field. Selections are from 1 to 150.

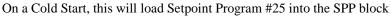

Example

Figure 95 shows two examples of Function Block Diagrams using a WVAR function block.

Using a Write Variable to write 0 (OFF) to a digital variable after being set to 1, (ON) by a recipe. Digital variable is ON for one scan cycle

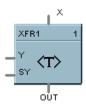


Figure 95 WVAR function block examples

XFR Function Block

Description

The **XFR** label stands for **Bumpless Analog Transfer Switch**. This block is part of the *Signal Selectors* category. It looks like this graphically on the Control Builder.

Function

Provide "bumpless" switching between two analog input values (X, Y) that is triggered by a digital input signal (*SY). When switched, the output ramps to the new value at a specified rate.

The rate at which the output (OUT) changes to a switched value (Y or X) is set by YRATE and XRATE configuration values, respectively.

- If SY is switched to ON, then: OUT changes to Y value at YRATE.
- If SY is switched to OFF, then: OUT changes to X value at XRATE.
- When OUT reaches the selected target input, OUT tracks the selected input (until SY changes).

Input

- \mathbf{X} = First analog value.
- **Y** = Second analog value.
- **SY** = Switch to Y command digital signal

Output

OUT = Selected Value

Block properties

Bumpless Analog XFR Switch - Properties 🛛 🔀					
Block Number 2 Order 2	OK Cancel				
Transfer Rates					
Transfer to X Rate	EU/min				
Transfer to Y Rate 0	EU/min				

Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Configuration parameters

You must configure the XFR function block parameters to the desired value or selection that matches your operating requirements. Table 82 describes the parameters and the value or selection.

Properties Group	Parameter	Index #	Parameter Description	Value or Selection
Set Transfer Rates	Transfer to X Rate	0	Rate at which output changes from Y to X in engineering units per minute	0 to 99999 Must be set at > = 0
	Transfer to Y Rate	1	Rate at which output changes from X to Y in engineering units per minute	0 to 99999 Must be set at > = 0

Table 82 XFR switch configuration data

Example

Figure 96 shows a Function Block Diagram using a XFR function block. It shows a typical switch action for a XFR function block.

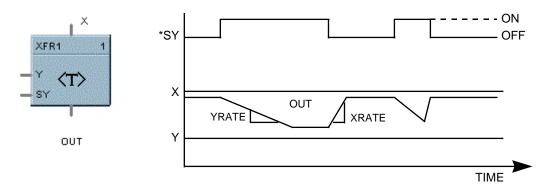


Figure 96 XFR function block example

XOR Function Block

Description

The **XOR** label stands for the **Exclusive OR** Boolean operation. This block is part of the *Logic* and *Fast Logic* categories. It looks like this graphically on the Control Builder.

Function

Turns a digital output signal (OUT) ON if only one of two digital input signals (X, Y) is ON. Otherwise, the output is OFF.

- If X = OFF and Y = ON, then: **OUT = ON**.
- If X = ON and Y = OFF, then: **OUT = ON**.
- If X = ON and Y = ON, or X = OFF and Y = OFF, then **OUT = OFF**.

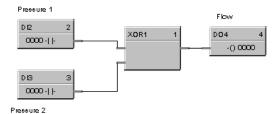
Input

X = First Digital Signal **Y** = Second Digital Signal

Output

OUT = resultant digital signal

Block properties


Double click on the function block to access the function block properties dialog box.

Block Order (Read Only)

You can change the assigned execution order number by selecting "Execution Order" in the "Configure" menu and arrange the order to suit your control strategy.

Example

Figure 97 shows a Function Block Diagram using a XOR function block. In the example, if pressure input 1 or 2 is high or low, flow is disabled. If only one pressure input is ON, flow is enabled.

Index

AMB. 24 Analog Alarm, 20

Analog Input, 14 Analog Output, 36

Analog Switch, 250

Analog System Status, 38

AND Boolean function (2 Inputs), 30

AND Boolean function (4 Inputs), 32 AND Boolean function (8 Inputs), 34

2AND, 30 2OR, 172

3-mode control, 185

4ADD, 12 4AND, 32 4MUL. 154 4OR, 174 4SUB, 248

-8-

-2-

-3-

1

8AND. 34 8DI. 80 8DO. 86 80R, 176

-A-

ABS, 9 Absolute Value, 9 Accutune, 196 Accutune Type, 55, 272 ADD, 11 Addition Mathematical Operation (2 Inputs), 11 Addition Mathematical Operation (4 Inputs), 12 AI, 14 Alarm 1 Setpoint 1 Type, 28, 57, 170, 198, 274 Alarm 1 Setpoint 1 Value, 28, 57, 170, 198, 274 Alarm 1 Setpoint 2 Type, 28, 57, 170, 198, 274 Alarm 1 Setpoint 2 Value, 28, 57, 170, 198, 274 Alarm 2 Setpoint 1 Type, 28, 57, 170, 198, 274 Alarm 2 Setpoint 1 Value, 28, 57, 170, 198, 274 Alarm 2 Setpoint 2 Type, 28, 57, 170, 198, 274 Alarm 2 Setpoint 2 Value, 28, 57, 170, 198, 274 Alarm Action Type, 22 Alarm Active, 38, 100 Alarm Hysteresis, 274 Alarm Hysteresis in %, 28, 170, 198, 274 Alarm Hysteresis in EU, 57 Alarm Setpoint, 22 Alarm Type Function, 20 Alarm unacknowledge, 38, 100 Algorithm, 47, 189 ALM, 20 ALM ACTIV, 38 ALMUNACK, 38

anti-sooting feature, 59, 76 AO, 36 ASYS, 38 Auto/Manual Bias, 24 Automatic Output mode, 141 Autotune Command, 117 Autotune Indicator, 45 Autotuning Output High Limit Value, 269 Autotuning Output Low Limit Value, 269 Auxiliary Setpoint, 241 Averaging Period, 62 Back Calculation Input, 186 Back Calculation Input Value, 45 Bad Block, 38, 100 BAD BLOCK, 38 BCD, 39

Bias, 16, 223 Bias Constant, 223 Binary Coded Decimal Translator, 39 bit packed number, 128 BOOL, 41 Breakpoints, 90, 92 Bumpless Analog Transfer Switch, 289 Burnout Check, 16

-C-

-**B**-

Calculated Dewpoint, 45 Calculated Dewpoint Output, 75 Calculated Percent Carbon Output, 75 CARB. 44 Carbon Potential, 44 Carbon Probe, 44 Carbon Probe Manufacturer, 76 Carbon Probe Vendor, 59 Cascade control, 201 CAVG, 61 Channel Number for Forward Motor Direction, 276 Channel Number for Reverse Motor Direction, 276 CMPR, 64 CO Properties, 59, 76 cold start, 61 Communications Failure, 38, 100

Comparison Calculation, 64 Configure Modbus Slave, 131 Continuous Average, 61 Control Action, 47, 165, 189, 265 Control Algorithm, 47, 189 Control Mode and Setpoint at NEWSTART, 25, 165, 190, 266 Control Mode and Setpoint at power up, 25, 165, 190, 266 Control Setpoint High Limit, 75 Controlled Restart after Power Loss, 236 Cycle Time, 38 CYCMINS, 38 CYCTIME, 38

-**D**-

DC. 65 DCMP. 70 Deadband, 276 Decimal Places, 26, 51, 168, 193, 269 Decrease Rate Limit, 282 Delay Time, 159, 161 Delta pressure bias, 151 Delta pressure scaler, 151 **DENC**, 73 Derivative (D), 185 DEV Bar Range (EU), 51 Deviation Compare, 70 Device Control, 65 **DEWP**, 75 Dewpoint Calculation, 75 DI, 78 Differential pressure input, 149 Digital Encoder, 73 Digital Input, 78 Digital Output, 84 Digital Switch, 89 DIV. 83 Division Mathematical operation, 83 DO, 84 Dropoff, 244 DS LIMIT, 38 **DSW. 89** DUPA, 189 DUPB, 189 Duplex control, 200

-E-

Edit Output Pins, Eight Digital Outputs, Eight Discrete Inputs, Engineering unit descriptor, Engineering units for display, Equation Field, *43*, Error list, *43*, Exclusive OR, External Mode, External Mode request, External Mode Request, *24*,

-**F**-

Failsafe, 16 Failsafe Out, 25, 165, 190 Failsafe Output Selection, 25, 165 Failsafe Output Value, 48, 190, 266 Failsafe Rules. 16 Failsafe Setpoint Value, 231 Failsafe Setpoints, 239 Fast Logic Status Block (FSYS), 100 Fast Logic system status block, 100 Fastforward, 229 Feedforward, 44 Feedforward Gain, 195 Feed-Forward Gain, 53 Feedforward value in percent, 44, 185 FGEN, 90 FI, 94 Filter Time (sec, 16 Filter Time Constant, 215 FLOW TOTALIZATION, 260 Force Bumpless Transfer, 117 Forward Relay Output, 276 Four-Selector Switch, 97 Free Form Logic, 41 Free Form Math, 122 Frequency Input, 94 FSS, 97 FSYS Function Block, 100 FSYS System Monitoring, 100 Function Block by Category, 2 Function Block Groups, 2 Function Generator - 10 Segment, 90 Furnace Factor, 59, 76 Furnace Properties, 76 Fuzzy Overshoot Suppression, 55, 196, 272

-G-

Gain, 52, 195, 271 Gas mass flow, 149 GENERAL TAB, 46 GHOLD, 228, 229 guaranteed Hold, 246 Guaranteed soak hold, 228 Guaranteed soak hold indication, 228

-H-

Hand/Off/Auto Switch, 105 HI TEMP, 38 High limit value, 102 High Low limiter, 101 High Monitor, 103 High Range Value, 15, 37, 262 High Rate Direction, 215 High Rate of Change setpoint, 215 High Selector, 110 HLLM, 101 HMON, 103 HOA, 105 HSEL, *110* HWOK, *38* Hysteresis, *22*, *104*, *116*, *165*, *215*

-I-

Increase Rate Limit, 282 Initial Mode, 25, 48, 165, 190, 266 Input rate, 259 Input Type and Range, 15 Input Types and Ranges, 17 Integral (I), 185

J

Jog, 228

-K-

K - Multiplier (scaling) constant, 223

-L-

Lag Time (min), 113 Latch. 120 LATCH, 22 Latch Command Digital signal, 120 LDLG, 112 Lead Time (min), 113 Lead/Lag, 112 Limiting, 269 LMON, 115 Local Bias Value (EU, 191 Local Bias Value (EU), 49, 267 Local Preset, 220, 259, 280 Local Preset Value, 259 Local Setpoint, 22 Local Setpoint mode, 141 Logic Functions, 43 Logic Operations, 43 Loop Switch, 117 Low Battery, 38, 100 Low Dropoff Value, 151 Low limit value, 102 Low Monitor, 115 Low Range Value, 15, 37, 262 Low Rate Direction, 215 Low Rate of Change setpoint, 215 Low Selector, 119 Low Temperature Limit, 59, 76 LOWBTRY, 38 LPSW, 117 LSEL, 119 LTCH, 120

-M-

Manual Output mode, 141 Manual Reset, 53, 195

Mass Flow Calculation, 149 MATH. 122 Math Functions, 124 Math Operations, 124 MBR. 126 MBS, 130 MBW, 137 MDFL, 143 MDSW, 141 Min-Max-Average-Sum, 145 MMA, 145 Modbus Read, 126 Modbus Slave, 130 Modbus Write, 137 Mode Flag, 143 Mode Request Output, 141 Mode Switch, 141 Mode switching, 141 Module Number for Forward Motor Direction, 276 Module Number for Reverse Motor Direction, 276 Motor Data, 276 Motor Travel Time, 276 MSF, 149 MSTR FAIL, 38, 100 MUL, 152 Multiplication Mathematical operation (2 Inputs), 152 Multiplication Mathematical Operation (4Inputs), 154

-N-

NEG, 156 Negate, 156 Newstart, 25, 100, 165 NEWSTART, 38 NOT, 157 NOT Boolean logic function, 157

-0-

O2 Probe Manufacturer, 59, 76 OFDT, 160 Off Delay Timer, 160 Off Line, 100 ON DELAY, 22 On Delay Timer, 158 ON/OFF. 162 On/Off Control function, 162 ONDT, 158 OR (2 Inputs) Boolean logic function, 172 OR (4 Inputs) Boolean logic function, 174 OR (8 Inputs) Boolean logic function, 176 Orifice constant, 151 Output at Power up, 25, 48, 190, 266 Output Cycle Time, 262 Output High Limit Value, 51, 193 Output Hysteresis, 165 Output Low Limit Value, 51, 193 Output Track Command, 44 Output Track Command [ON,OFF], 186, 263 Output Track value in Percent, 44, 186, 263

Oxygen Sensor Input, 75

-P, Q-

Parameter Index, 209 Parameter Index#, 284 PB. 179 Percent Carbon Monoxide, 44, 75 Percent Hydrogen, 59, 76 Period, 206 Periodic Timer, 205 PI. 182 PID. 185 PID A, 47, 189 PID algorithm, 44 PID B, 47, 189 PID Configuration, 199 Positive Edge Detect Count Input, 279 Power up Mode, 25, 165 Power Up Mode, 48, 190, 266 Power Up Out, 25, 48, 190, 266 Preload, 219 Preset Multiple Registers, 135, 139 Preset Single Registers, 135, 139 Preset Trigger, 259 Pressure bias. 151 Pressure scaler, 151 Probe temperature units, 59, 76 Process Variable Analog Input, 185 Prop Band, 195 Proportional (P), 185 Proportional Band (PB), 52, 195, 271 Proportional, Integral, Derivative, 185 PT, 205 Pulse Input, 182 Pushbutton, 179 Pushbutton function display, 179 Pushbutton Function Group Configuration, 180 Pushbutton Function Groups, 180 PV High Range Value, 26, 51, 168, 193, 269 PV Low Range Value, 26, 51, 168, 193, 269

-R-

Range Hi, 37 Range Low, 37 RATE action, 53, 195, 271 Rate Minutes, 53, 195, 271 Rate of Change, 214 Ratio, 49, 191, 267 Ratio control, 202 Ratio/Bias, 49, 191, 267 RCON, 208 RCP. 210 Read Coil Status, 128, 133 Read Constant Parameter Data, 208 Read Holding Reg, 128 Read Input Registers, 128, 133 Read Input Status, 128, 133 Recipe Selector, 210

Register data type, 132 Register Data Type, 128 Relative Humidity, 212 Remote Bias value for Ratio PID, 44, 186 remote preset, 220, 280 Remote Preset, 219, 259 Remote Setpoint Analog Input, 44, 185 Remote Setpoint mode, 141 Remote Setpoint selection, 22 Remote Setpoint Source and Units, 49, 166, 191, 267 Repeats per Minute, 195, 271 Repeats/minute, 53 **RESET**, 228 RESET (Integral Time), 195, 271 Reset Minutes, 53, 195, 271 RESET(Integral Time), 53 Reset/Cycle, 206 Resettable Timer, 219 restart, 228 Restart, 100, 229 RESTART, 38 Restart Scenario, 230 Reverse Relay Output, 276 RH, 212 ROC, 214 Rotary Switch, 217 RSW, 217 RTMR, 219

-**S**-

Scale and Bias, 222 Scale Factor, 223 SCB, 222 Sensor Input, 44 Setpoint High Limit Value, 26, 51, 168, 193, 269 Setpoint Low Limit Value, 26, 51, 168, 193, 269 Setpoint Programmer, 227 Setpoint Programming Events, 224 setpoint ramp/soak program, 227 Setpoint Rate Down value, 51, 168, 193, 269 Setpoint Rate Up value, 51, 168, 193, 269 Setpoint Scheduler, 237 Setpoint Scheduler State Flags, 245 Setpoint Scheduler State Switch, 246 Setpoint Tracking, 47, 165, 189, 265 SPEV, 224 SPP, 227 SPS, 237 SPSA. 241 SORT. 243 Square Root, 243 Square root extraction, 149 Start/Restart, 25, 48, 165, 266 State Switch, 246 STFL, 245 STSW, 246 SUB. 247 Subtraction mathematical operation (2 Inputs), 247 Subtraction mathematical operation (4 Inputs), 248 SW, 250 Switch Inputs, 186 SWO, 117 SYNC, 252 Synchronize, 252

-**T**-

TAHD, 254 Target Block Number, 286 Temperature bias, 151 Temperature Probe, 44 Temperature scaler, 151 TGFF, 256 Three Position Step Control, 263 Time Constants, 113 Time delay, 159, 161 TIME OFF, 38 Time Proportional Output, 261 Time/Cycle, 206 Toggle Flip-Flop, 256 Token, 122 TOT, 258 Totalizer, 258 TPO, 261 TPSC (3POS), 263 Track and Hold, 254 Transfer Rates, 290 Traverse Time, 276 TRIG, 277 Trigger or "One Shot", 277 TSTMODE, 38 Tune Set 1, 117 Tune Set 2, 117

Tuning Constants, 52, 195, 271 tuning set 1, 195 tuning set 2, 195

-U-

Units, 51, 193 Unlatch Command Digital signal, 120 UP/DOWN Counter, 279 UPDN, 279

-V-

Velocity (Rate) Limiter, 281 VLIM, 281

-W-

warm start, 61 WCON, 283 Working Setpoint in Engineering Units, 45 Write Constant, 283 Write Tuning Constants, 285 Write Variable, 287 Write Variable Number, 287 WTUN, 285 WVAR, 287

-X, Y, Z-

XFR, 289 XOR, 291

Honeywell

Sensing and Control Honeywell 11 West Spring Street Freeport, IL 61032