WHEST
 ProVU 4 Advanced Temperature \& Process Controller

1/16 DIN Format
Graphical / text LCD Display (red/green) Profiling option Datalogging option (data, alarms \& events) 5 language (English, French, German, Italian, Spanish)

Configurable user-menu structure
Modbus RS485 and Modbus TCP Ethernet supported USB option

Standards CE, UL and cUL

ProVU with graphic/text LCD display is an affordable temperature and process controller with advanced functionality including profiling and datalogging options. Designed to improve user efficiency many features are integrated to reduce commissioning time, simplify operation and minimise maintenance downtime.

Specification

Features

HMI Display

User operation and control

Profiling function (option)
Datalogging Function (option)

Process Input
Sampling Rate:
Resolution:
Impedance:
Temperature stability:
Supply Variation
Humidity Influence:
Process Display:
Process Variable Input Offset:
Sensor Break Detection:

Isolation:

Graphic display, easy to read backlit LCD display, dual colour screen (green / red), multi-language option, custom splash-screen on startup (bitmap file), alarm status view, on screen trend view, LEDs to indicate heat, cool, autotuning and alarm
Easy setup wizard for quick configuration, (inputs, alarms, outputs, comms \& real-time clock), universal input for thermocouple, RTDs and linear DC process signals ($m A, m V$ or V), Flexible output options, relay, ssd driver, triac \& Linear DC (9 max). Select to precisely match the process, digital input (2 max) for setpoint selection, profile control, datalogging start/stop, control output enable/disable or auto/manual control, Configurable menus (via BlueControl software), USB port for local upload/download of configuration files \& download logged data, password protected supervisor and configuration mode, pre-tune and self-tune function, master-slave configuration for multi-zone applications
255 segments to allocate freely in up to 64 programs, ramp, dwell, hold, loop or jump to other profile, user defined text profile name, delayed or real-time day/time profile start, up to 5 event outputs. Historic process data for analysis or reporting, export data files via front USB or comms, log process values, setpoints or alarms (including min, max \& ave), run-then-stop or FIFO (first in - first out) buffer recording, logging intervals from 1 s to 30 m

10 per second.

16 bits. Always four times better than display resolution
$>10 \mathrm{M}$ resistive, except DC $\mathrm{mA}(5)$ and $\mathrm{V}(47 \mathrm{k})$.
Error $<0.01 \%$ of span per ${ }^{\circ} \mathrm{C}$ change in ambient temperature.
Supply voltage influence negligible within supply limits.
Negligible if non-condensing.
Displays up to 5\% over and 5\% under span limits
Reading adjustable \pm Controller Span. +ve values added to Process Variable, -ve values subtracted from Process Variable
Thermocouple \& RTD - Control goes to pre-set power value. High \& Sensor Break alarms activate. Linear (4 to $20 \mathrm{~mA}, 2$ to 10 V and 1 to 5 V only) - Control goes to pre-set power value. Low \& Sensor Break alarms activate.
Isolated from all outputs (except SSR driver) at 240 V AC.

Supported Thermocouple Types \& Ranges:

Thermocouple Calibration:

Supported RTD Types \& Ranges:

RTD Calibration
RTD Excitation:
Lead Resistance
Supported Linear Types \&
Ranges:

DC Calibration:
DC Input Multi-Point Linearization:

Auxiliary Inputs
Supported Input Types \&
Ranges:

Accuracy:

Sampling Rate:
Resolution:
Impedance:
Sensor Break Detection:

Isolation:
Auxiliary Input Scaling:
Digital Inputs
Volt-free contacts
(or TTL):
Isolation:
Digital Input Sensitivity:

Type	Range	${ }^{\circ} \mathrm{C}$ Range ${ }^{\circ} \mathrm{F}$
B	+100 to $1824^{\circ} \mathrm{C}$	+211 to $3315^{\circ} \mathrm{F}$
C	0 to $2320^{\circ} \mathrm{C}$	32 to $4208^{\circ} \mathrm{F}$
D	0 to $2315^{\circ} \mathrm{C}$	0 to $4199^{\circ} \mathrm{F}$
E	-240 to $1000^{\circ} \mathrm{C}$	-400 to $1832^{\circ} \mathrm{F}$
J	-200 to $1200^{\circ} \mathrm{C}$	-328 to $2192^{\circ} \mathrm{F}^{*}$
K	-240 to $1373^{\circ} \mathrm{C}$	-400 to $2503^{\circ} \mathrm{F}^{*}$
L	0 to $762^{\circ} \mathrm{C}$	32 to $1402^{\circ} \mathrm{F}^{*}$
N	0 to $1399^{\circ} \mathrm{C}$	32 to $2551^{\circ} \mathrm{F}^{*}$
PtRh		
$20 \%: 40 \% 0$ to $1850^{\circ} \mathrm{C}$	32 to $3362^{\circ} \mathrm{F}$	
R	0 to $1759^{\circ} \mathrm{C}$	32 to $3198^{\circ} \mathrm{F}$
S	0 to $1762^{\circ} \mathrm{C}$	32 to $3204^{\circ} \mathrm{F}$
T	-240 to $400^{\circ} \mathrm{C}$	-400 to $752^{\circ} \mathrm{F}^{*}$

Optional decimal place can be displayed up to $999.9^{\circ} \mathrm{C} / \mathrm{F}$
0.1% of full range, $1 \mathrm{LSD}\left(1^{\circ} \mathrm{C}\right.$ for internal CJC if enabled).
Linearization better than better 0.2 C (0.05 typical) on ranges marked * in the table above.
Linearization for other ranges is better than better than 0.5 C .
BS4937, NBS125 \& IEC584

Type $3-W i r e ~$	Range	${ }^{\circ} \mathrm{C}$ Range ${ }^{\circ} \mathrm{F}$
PT100	-199 to $800^{\circ} \mathrm{C}$	-328 to $1472^{\circ} \mathrm{F}$
NI120	-80 to $240^{\circ} \mathrm{C}$	-112 to $464^{\circ} \mathrm{F}$

Optional decimal place can be displayed up to $999.9^{\circ} \mathrm{C} / \mathrm{F}$
Sensor current 150 $\mu \mathrm{A}$ 10\%.
Proportional Output Power Bias 0 to 100\%. (-100 to 100
<0.5\% of span error for max 50 per lead, balanced.
Selectable from 0.1 to 512 seconds (SSR output)
Type Range Offset Range
$\mathrm{mA} \mathrm{DC} \quad 0$ to $20 \mathrm{~mA} \mathrm{DC} \quad 4$ to 20 mA DC
mV DC $\quad 0$ to 50 mV DC $\quad 10$ to 50 mV DC
V DC $\quad 0$ to 5 V DC $\quad 1$ to 5 V DC
V DC 0 to 10V DC 2 to 10V DC
Scalable from -9999 to 10000. Decimal point selectable from
0 to 3 places, but limited to 5 display digits (e.g 9999.9)
0.1% of full range, 1 LSD .
Up to 15 scaling values can be defined anywhere between 0.1 and 100% of input.

Open contacts $(>5000$ or 2 to 24 VDC signal $=$ Logic High
Closed contacts (<50 or -0.6 to +0.8 VDC signal $=$ Logic Low.
Reinforced safety isolation from inputs and other outputs.
Edge Sensitive. Requires High-Low or Low-High transition to change function. Response within <0.25 second.

Selectable Digital Input
Functions:

Outputs-Single Relay
Type \& Rating:
Lifetime:
Isolation:

Outputs-Dual Relay Type \& Rating

Lifetime:
Isolation:

Outputs-Quad Relay
Type \& Rating:
Lifetime:
Isolation:
SSR Driver
Drive Capability
Isolation:

Triac
Operating Voltage:
Current Rating:
Isolation:

Linear DC
Ranges
Resolution:
Accuracy:

Isolation:

Transmitter PSU
Power Rating:
Isolation:

Communications

PC Configuration
Connection:
Isolation:

RS485

Connection:
Protocol:
Slave/Master Mode
Supported Speeds:
Data Type:
Isolation:
Ethernet
Connection:
Protocol:

Function	Logic High	Logic Low
Internal Setpoint Select	Local SP1	Alternate SP
Auto/Manual Control Select	Automatic	Manual Mode
Control Outputs	Enabled	Disabled

Single pole double throw (SPDT); 2A resistive at 120/240VAC.
$>500,000$ operations at rated voltage/current.
Reinforced safety isolation from inputs and other outputs.

Single pole single throw (SPST),2A resistive at 120/240VAC. Dual relay modules have shared common.
>200,000 operations at rated voltage/current.
Reinforced safety isolation from inputs and other outputs.

Single pole single throw (SPST),2A resistive at 120/240VAC. Dual relay modules have shared common.
$>500,000$ operations at rated voltage/current.
Reinforced safety isolation from inputs and other outputs.

SSR driver voltage $>10 \mathrm{~V}$ into 500 minimum.
Reinforced safety isolation from inputs and other outputs.

20 to 280 Vrms (47 to 63 Hz)
0.01 to 1 A (full cycle rms on-state @ $25^{\circ} \mathrm{C}$);
de-rates linearly above $40^{\circ} \mathrm{C}$ to $0.5 \mathrm{~A} @ 80^{\circ} \mathrm{C}$.
Reinforced safety isolation from inputs and other outputs.

0 to 5,0 to $10,1-5$, 2 to 10 V \& 0 to 20,4 to 20 mA (selectable) with 2% over/under-drive when used for control outputs.
8 bits in 250 mS (10 bits in 1s typical, >10 bits in $>1 \mathrm{~s}$ typical).
0.25% of range, (mA @ 250 , V @ $2 k$). Degrades linearly to $\pm 0.5 \%$ for increasing burden (to specification limits).
Reinforced safety isolation from inputs and other outputs.

24 V nominal (19 to 28 V DC) into 910 minimum resistance. (Option to use DC Linear output as 0 10 V stabilised PSU).
Reinforced safety isolation from inputs and other outputs.

RS232 via PC Configurator Cable to RJ11 socket under case.
Not isolated from input or SSR Driver outputs. For bench configuration only.

Locates in Option Slot A. Connection via rear terminals (refer to wiring diagram).
Modbus RTU.
Slave address range 1-255 or Setpoint master mode.
$4800,9600,19200,38400,57600$ or 115200 bps.
8 data bits and 1 stop bit. Odd, even or no parity.
240 V reinforced safety isolation from all inputs and outputs.

Locates in Option Slot A. Connection via RJ45 connector on top of case.
Modbus TCP. Slave only.

Supported Speed
Isolation

Loop Control

Tuning Types:
Proportional Bands:
Automatic Reset:
Rate:
Manual Reset
Deadband/ Overlap:
ON/OFF Differential:
Auto/Manual Control:
Cycle Times:
Setpoint Ramp:

Alarms
Alarm Types:

Alarm Hysteresis:

Combination Alarm Outputs:

Operating conditions
(for indoor use)
Temperature:
Relative Humidity
Supply Voltage and Power:

Environmental

Standards
EMI:
Safety Considerations:
Front Panel Sealing:

Display
Display Type:
Display Area:
Display Characters:
Trend View:
Trend Data:
Trend Sample Rate

Additional digital input

 optionsSelectable Digital Input
Functions:

10BaseT or 100BaseT
240 V reinforced safety isolation from the supply, inputs and outputs (except SSR Drivers).

Pre-Tune, Auto Pre-Tune, Self-Tune or Manual Tuning
Primary \& Secondary (e.g. Heat \& Cool) 0.5% to 999.9% of input span in 0.1% increments, or On/Off control.
Integral Time Constant, 1s to 99 min 59 s and OFF
Derivative Time Constant, 1s to 99 min 59 s and OFF
Bias 0 to 100\% (-100% to $+100 \%$ Primary \& Secondary).
-20% to $+20 \%$ of Primary + Secondary Proportional Band
0.1% to 10.0% of input span
Selectable with "bumpless" transfer when switching between Automatic and Manual control
Selectable from 0.5 s to 512 s .
Ramp rate selectable 1 to 9999 LSDs per hour and infinite.

Up to 5 alarms selectable as Process High, Process Low, Band, Deviation, Rate of Signal Change (per minute), Sensor/input Break, Loop Alarm. Band and Deviation (high or low) alarm values are relative to the current setpoint value.
A deadband from 1 LSD to full span (in display units) for Process, Band or Deviation Alarms.
Rate Of Change Alarm hysteresis is the shortest time (1 to 9999 secs) the rate of change must be above the threshold for the alarm activate, or fall below the threshold to deactivate
Note: If the duration is less than this time, the alarm will not activate no matter how fast the rate of rise.
Logical OR of alarms $1 \& 2,1$ to 3 , 1 to 4 or 1 to 5 .
Logical AND of alarms 1 to 5 with Profiler Events 1 to 5 .
$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (Operating), $-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ (Storage).
20\% to 95\% non-condensing.
Mains versions:
100 to $240 \mathrm{VAC} 10 \%, 50 / 60 \mathrm{~Hz}, 20 \mathrm{VA}$.
Low voltage versions:
20 to $48 \mathrm{VC} 50 / 60 \mathrm{~Hz} 15 \mathrm{VA}$ or 22 to 65 VDC 12 W .

CE, UL, cUL.
Complies with EN61326
Complies with EN61010-1 \& UL61010C-1.
Pollution Degree 2, Installation Category II.
To IP66 (IP65 front USB connector). IP20 behind the panel.
160×80 pixel, monochrome graphic LCD with a dual colour (red/green) backlight.
$66.54 \mathrm{~mm}(\mathrm{~W}) \times 37.42 \mathrm{~mm}(\mathrm{H})$.
0 to 9 , a to z , A to Z , plus () - and
120 of 240 data points shown in a scrollable window. Data is not retained when power turned off or if time base is changed.
Any active alarm plus PV (solid) \& SP (dotted) at sample time or Max/Min PV between samples (candle-stick graph).
1; 2; 5; 10; 15; 30 seconds or 1; 2; 5; 10; 15; 30 minutes.

Function	Logic High	Logic Low
Profile Run/Hold	Hold	Run
Hold Segment Release	Release	No Action
Profile Abort	Abort	No Action
Data Recorder	Stop	Start

Digital Input Sensitivity:

Additional communications options - usb Connection:

Protocol:
Supply Current:
Targeted Peripheral: Isolation

Additional alarms

 optionsCombination Alarm Outputs

Data recorder
Recording Memory:
Recording Interval:
Recording Capacity:
RTC Battery Type:
RTC accuracy

Profiler
Profile Limits
Loop Back
Profile Cycling
Sequence Repeats
Segment Types
Timebase
Segment Time
Ramp Rate
Hold Segment Release
Start From
Delayed Start
Abort Action
Power/signal Loss Recovery
Auto-Hold
Profile Control
Segment Events

Edge Sensitive. Requires High-Low or Low-High transition to change function. Response within <0.25 second

Locates in Option Slot C. Connection via front mounted connector
USB 1.1 or 2.0 compatible. Mass Storage Class.
Up to 250 mA .
USB Memory Stick.
Reinforced safety isolation from all inputs and outputs.

Logical AND of alarms 1 to 5 with Profiler Events 1 to 5 .

1 Mb non-volatile flash memory. Data retained when power is turned off.
1; 2; 5; 10; 15; 30 seconds or 1; 2; 5; 10; 15; 30 minutes.
Dependant on sample rate and number of values recorded. Two values can be recorded for up to 7 days at 10 s intervals. More values or faster sample rates reduce the maximum duration.
CR 1616 3V Lithium. Clock runs for >1 year without power.
Real Time Clock error <1second per day.

Number of profiles $=64$ maximum.
Total number of segments (all programs) $=255$ maximum .
1 to 9999 loops back to specified segment.
1 to 9999 or Infinite repeats per profile.
1 to 9999 or Infinite repeats of joined profile sequences.
Ramp Up/Down over time, Ramp Rate Up/Down, Step, Dwell, Hold, Join A Profile, End or Repeat Sequence Then End.
hh:mm:ss (Hours, Minutes \& Seconds).
Maximum segment time 99:59:59 hh:mm:ss. Use loop-back for longer segments (e.g. 24:00:00 $\times 100$ loops = 100 days).
0.001 to 9999.9 display units per hour.

Release With Key Press, At Time Of Day or Digital Input.
1st segment starts from current setpoint or current input value.
After 0 to 99:59 (hh:mm) delay, or at specified day(s) \& time.
Keep Last Profile Setpoint, Use Controller Setpoint or Control Outputs Off.
Continue Profile, Restart Profile, Keep Last Profile Setpoint, Use Controller Setpoint or Control Outputs Off.
Hold if input >Band above and/or below SP for each segment.
Run, Manual Hold/Release, Abort or jump to next segment.
Events turn on for the duration of the segment. For End Segments, the event state persists until another profile starts, the user exits from profiler mode, or the unit is powered down.

Wiring Connections

Ordering Code

West Control Solutions - International Sales and Support

CHINA

Danaher Setra-ICG (Tianjin Co., Ltd
No. 28 Wei 5 Road
The Micro-Electronic Industry Park TEDA,
Xiqing District, Tianjin 300385
Tel: +86 2283988098 Fax: +86 2283988099
Sales Hotline: 4006661802
e-mail: tc.sales@danaher.com

GERMANY

PMA Prozeß- und, Maschinen- Automation GmbH, Miramstraße 8, 7D -34123 Kassel
Tel: +49 (561) 505-1307 Fax: +49 (561) 505-1710 e-mail: mailbox@pma-online.de

USA
West Control Solutions
1675 Delany Road, Gurnee, IL 60031-1282
Tel: 8008666659 Fax: 8477825223
e-mail: custserv.west@dancon.com

FRANCE

Hengstler SA, 69 Rue de la Belle Etoile
Bat D - ZI Paris Nord II, 95700, Roissy
Tel: +33 (1) 77809040 Fax:+33 (1) 77809050 e-mail: info@westinstruments.com

UNITED KINGDOM

West Control Solutions
The Hyde Business Park, Brighton, East Sussex, BN2 4JU Tel: +44 (0) 1273606271 Fax: +44 (0) 1273609990 e-mail: info@westinstruments.com

Brochures and datasheets are available for the complete range of West Control Solutions products, contact your local sales
office or visit our website at: www.west-cs.com for more information.

Specifications are subject to change without notice, as a result of continual development and improvement, E\&OE

