Capacitance Switches Pointek CLS200/CLS300 (Digital)

Operating Instructions • 11/2011

SIEMENS

Safety Guidelines: Warning notices must be observed to ensure personal safety as well as that of others, and to protect the product and the connected equipment. These warning notices are accompanied by a clarification of the level of caution to be observed.

Qualified Personnel: This device/system may only be set up and operated in conjunction with this manual. Qualified personnel are only authorized to install and operate this equipment in accordance with established safety practices and standards.

Unit Repair and Excluded Liability:

- The user is responsible for all changes and repairs made to the device by the user or the user's agent.
- All new components are to be provided by Siemens Milltronics Process Instruments.
- Restrict repair to faulty components only.
- Do not reuse faulty components.

Warning: Cardboard shipping package provides limited humidity and moisture protection. This product can only function properly and safely if it is correctly transported, stored, installed, set up, operated, and maintained.

This product is intended for use in industrial areas. Operation of this equipment in a residential area may cause interference to several frequency based communications.

Note: Always use product in accordance with specifications.

Copyright Siemens AG 2011. All Rights Reserved	Disclaimer of Liability
This document is available in bound version and in electronic version. We encourage users to purchase authorized bound manuals, or to view electronic versions as designed and authored by Siemens Milltronics Process Instruments. Siemens Milltronics Process Instruments will not be responsible for the contents of partial or whole reproductions of either bound or electronic versions.	While we have verified the contents of this manual for agreement with the instrumentation described, variations remain possible. Thus we cannot guarantee full agreement. The contents of this manual are regularly reviewed and corrections are included in subsequent editions. We welcome all suggestions for improvement.
	Technical data subject to change.

MILLTRONICS® is a registered trademark of Siemens Milltronics Process Instruments.

Contact SMPI Technical Publications at the following address: Technical Publications Siemens AG Siemens Milltronics Process Instruments 1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario, Canada, K9J 7B1 Email: techpubs.smpi@siemens.com

European Authorized Representative

- Siemens AG Industry Sector 76181 Karlsruhe Deutschland
- For a selection of Siemens Milltronics level measurement manuals, go to: www.siemens.com/processautomation. Under Process Instrumentation, select *Level Measurement* and then go to the manual archive listed under the product family.
- For a selection of Siemens Milltronics weighing manuals, go to: www.siemens.com/processautomation. Under Weighing Technology, select Continuous Weighing Systems and then go to the manual archive listed under the product family.

Table of Contents

Safety Notes	
, Safety marking symbols	1
The Manual	
Application Examples	
Technical Support	
Abbreviations and Identifications	3
Pointek CLS200/300 Digital	5
Applications	
Features	
System Implementation	
Programming	
Specifications	
Installation: Pointek CLS200 Digital	
Handling Precautions	
Location Mounting	
Mounting Restrictions	
CLS200 Dimensions	
Process Cautions	
Installation: Pointek CLS300 Digital	20
Location	
Mounting	
Mounting Restrictions	
Process Cautions	
CLS300 Dimensions	23
Wiring: CLS200/300 Digital	24
Electrical Connection	24
Recommended Cable Entries (equivalents can be used)	25
Connection to screw terminals	
Local Operation: Pointek CLS200/300 Digital (Standalone)	29
Local User Interface (LUI)	
Input keypad	
LCD display (local operation)	
Programming via the Local User Interface (LUI) Mode selection and adjustment	
Status codes	
Error messages	
Mode 2: Sensor test (default: OFF)	
Mode 4: Rise Time (default: 0.0 s)	
Mode 5: Fall Time (default: 0.0 s)	37

	Mode 13: Di
	Mode 14: Ur
	Mode 15: No
ts	Mode 16: PF
ten	Mode 19: 0%
oni	Mode 20: 10
fC	Mode 23: Ala
able of Contents	Mode 24: Co
lde	Mode 25: Sv
T 6	Mode 26: Sv
	Mode 27: Lo
	CLS200 Digital Sw
	CLS300 Digital Sv
	Wiring: connecting

Mode 10: HW Write Protection (default: OFF, display – –)	
Mode 13: Display Source (default: 0)	38
Mode 14: Unit (default: °C)	
Mode 15: Node address (default: 126)	39
Mode 16: PROFIBUS Ident Number (default: 1)	40
Mode 19: 0% Application Range setting	40
Mode 20: 100% Application Range setting	41
Mode 23: Alarm output trigger (default: dIAG)	
Mode 24: Contact type (default: CLOSE)	
Mode 25: Switch Point Off to On/Switch Point 1/Rising Edge (default: 55%)	
Mode 26: Switch Point On to Off/ Falling Edge (default: 45%)	
Mode 27: Local Status Text (default: U_075)	
CLS200 Digital Switching Point Setup	
CLS300 Digital Switching Point Setup	48
Wiring: connecting CLS200/300 Digital to a PROFIBUS PA network	50
Electrical Connection	
PROFIBUS PA connection to screw terminals	
PROFIBUS PA connection via M12 plug	52
Remote Operation via PROFIBUS PA	53
SIMATIC PDM	53
Electronic Device Description (EDD)	
Configuration	53
Setting the PROFIBUS address	
Bus Termination	54
Power Demands	54
Cyclic versus Acyclic Data	54
	EE
Status	
Status	55
Status Status Byte	55 62
Status Status Byte Configuration Example PROFIBUS PA Parameters	55 62 . 63
Status	55 62 63 63
Status	55 62 63 63 64
Status Status Byte Configuration Example PROFIBUS PA Parameters Measured Values Functions Changing parameter settings	55 62 63 63 64 64
Status Status Byte Configuration Example PROFIBUS PA Parameters Measured Values Functions Changing parameter settings Filling level status:	55 62 63 63 64 64 64 65
Status Status Byte Configuration Example PROFIBUS PA Parameters Measured Values Functions Changing parameter settings Filling level status: Lock	55 62 63 63 64 64 65 71
Status Status Byte Configuration Example PROFIBUS PA Parameters Measured Values Functions Changing parameter settings Filling level status:	63 63 63 63 64 64 65 71 72

Appendix A: Technical References	73
Operating Principles	73
High Frequency Oscillator	
Detection Range	
The Pointek CLS200 electrode	
The Pointek CLS300 electrode	
Sensor Test	76
PROFIBUS PA electronics: mode of operation	77
Pointek CLS200 Digital Pressure versus Temperature Curves	78
CLS200 compact and extended rod versions, threaded	78
CLS200 cable version, threaded	78
CLS200 sanitary compact and extended rod versions	78
CLS200 compact and extended rod, ASME welded flange	79
CLS200 cable, ASME welded flange	79
CLS200 compact and extended rod, EN welded flange	79
CLS200 cable, EN welded flange	80
Pointek CLS300 Digital Pressure versus Temperature Curves	80
CLS300 standard, extended rod and cable versions, threaded	80
CLS300 high temperature rod version, threaded	80
CLS300 standard, extended rod and cable versions, ASME welded flange	81
CLS300 high temperature rod version, ASME welded flange	81
CLS300 standard, extended rod and cable versions, EN welded flange	82
CLS300 high temperature rod version, EN welded flange	82
Appendix B: Maintenance and Repairs	83
Unit Repair and Excluded Liability	83
Appendix C: Profile structure – Pointek CLS200/300 (PROFIBUS PA)	84
PROFIBUS PA electronics: mode of operation	
Block model for recording and processing measured values	
Parameters for local digital display	86
Description of the blocks	
Transducer Block	86
Discrete Input Function Block	

Appendix D: Product Nameplates89
Pointek CLS200
Appendix E: Hazardous Area Installation91
Instructions specific to hazardous area installations
Appendix F: Dimensions - CLS200 Digital95
Appendix G: CLS300 Digital Dimensions103
Threaded Processs Connection 103 High Temperature Rod Version, threaded 105 Non-insulated Cable Version, threaded 106 Insulated Cable Version, threaded 107 CLS300 - Flanged Process Connections 108 Flange Facing Table 108 Rod Version, welded flange 109 High Temperature Rod Version, welded flange 110 Non-insulated Cable Version, welded flange 111 Insulated Cable Version, welded flange 112
Appendix H: Shortening the cable113
Pointek CLS200 Digital, Cable Version113 Pointek CLS300 Digital, Cable Version116
Index

Safety Notes

Special attention must be paid to warnings and notes highlighted from the rest of the text by grey boxes.

- WARNING: relates to a caution symbol on the product, and means that failure to observe the necessary precautions can result in death, serious injury, and/or considerable material damage.
- WARNING¹: means that failure to observe the necessary
- precautions can result in death, serious injury, and/or considerable material damage.

Note: means important information about the product or that part of the operating manual.

Safety marking symbols

In manual	On Product	Description
\triangle	\triangle	WARNING: refer to accompanying documents (manual) for details.
Ŧ		Earth (ground) Terminal
		Protective Conductor Terminal

The Manual

Note: Please follow the installation and operating procedures for a quick, trouble-free installation and to ensure the maximum accuracy and reliability of your Pointek CLS200/ 300. This manual applies to the Pointek CLS200/300 Digital models only.

Pointek CLS200/300 is available in two models, Standard and Digital. For information on the CLS200/300 Standard model, please see manual 7ML19985JH02.

This manual will help you set up your Pointek CLS200/300 Digital for optimum performance. There are two installation options:

- the unit can be used as a standalone device, controlled locally
- the unit can be installed on a network, and controlled either remotely via PROFIBUS PA, or locally using the local user interface (LUI)

Note: This manual applies to CLS200/300 Digital devices manufactured after August 2010. For Units manufactured prior to August 2010 please use Operating Instructions 7ML19985JJ01.

¹ This symbol is used when there is no corresponding caution symbol on the product.

Sections in this manual are designated as follows:

- 1. **Digital**: Information is applicable to any CLS200/300 Digital unit (indicated by **Digital** in the page footers)
 - *Pointek CLS200/300 Digital* an introduction to Pointek CLS200/300 Digital model and to the manual
 - Specifications
 - Installation: Pointek CLS200 Digital
 - Appendix A: Technical References
 - Appendix B: Maintenance and Repairs
 - Appendix D: Product Nameplates
 - Appendix E: Hazardous Area Installation
 - Appendix F: Dimensions CLS200 Digital
 - Appendix G: CLS300 Digital Dimensions
 - Appendix H: Shortening the cable
- Standalone: Information is applicable to units installed as a standalone device (indicated by Standalone in the page footers), and to units installed on a PROFIBUS PA network:
 - Wiring: CLS200/300 Digital
 - Local Operation: Pointek CLS200/300 Digital (Standalone)
- 3. **PROFIBUS PA**: Information is applicable only to units connected to PROFIBUS PA (indicated by **PA** on the side tabs and **PROFIBUS PA** in the page footers).
 - Wiring: connecting CLS200/300 Digital to a PROFIBUS PA network
 - Remote Operation via PROFIBUS PA
 - PROFIBUS PA Parameters
 - Appendix C: Profile structure Pointek CLS200/300 (PROFIBUS PA)

We always welcome suggestions and comments about manual content, design, and accessibility. Please direct your comments to <u>techpubs.smpi@siemens.com</u>.

For other Siemens Milltronics level measurement manuals, go to: <u>www.siemens.com/level</u> and look under **Level Measurement.**

Application Examples

The application examples used in this manual illustrate typical installations using Pointek CLS200/300; other configurations may also apply.

In all examples, substitute your own application details. If the examples do not apply to your application, check the applicable parameter reference for the available options.

7ML19985JJ05

Technical Support

Support is available 24 hours a day.

To find your local Siemens Automation Office address, phone number and fax number go to:

www.siemens.com/automation/partner

- Click on the tab Contacts by Product then drill down to find your product group (+Process Automation > +Process Instrumentation > +Level Measuring Instruments).
- Select the team Technical Support. Click on Next.
- Click on the appropriate continent, then select the country followed by the city. Click on **Next**.

For on-line technical support go to:

www.siemens.com/automation/support-request

- Enter the device name or order number, then click on **Search**, and select the appropriate product type. Click on **Next**.
- You will be prompted to enter a keyword describing your issue. Then either browse the relevant documentation, or click on Next to email a detailed description of your issue to Siemens Technical Support staff.

Siemens IA/DT Technical Support Center: phone +49 (0)911 895 7222

Abbreviations and Identifications

Short form	Long Form	Description	Units
CE / FM / CSA	Conformitè Europèene / Factory Mutual / Canadian Standards Association	safety approval	
ε _r		relative dielectric constant	
ESD	Electrostatic Discharge		
Ex	Explosion Proof	safety approval	
Exd	Flame Proof	method of protection for a hazardous area	
FEP	Fluorinated Ethylene Polymer	modified polymer	
FKM/FPM	Fluorelastomer		
FFKM/FFPM	Perfluoroelastomer		
IS	Intrinsically Safe	method of protection for a hazardous area	
LCD	Liquid Crystal Display		
LUI	Local User Interface		

Short form	Long Form	Description	Units
μF	micro Farads	10 ⁻⁶	Farad
μs	micro Seconds	10 ⁻⁶	Seconds
NC	normally closed	relay contact position	
NO	normally open	relay contact position	
pF	pico Farads	10 ⁻¹²	Farad
PDM	Process Device Manager	configuration tool	
PEEK	Polyaryletheretherketone	organic polymer	
PPS	Polyphenylene Sulfide	polymer	
PTFE	Polytetrafluoroethylene	thermoplastic fluoropolymer	
PVDF	Polyvinylidene Fluoride	engineered fluoropolymer	

Pointek CLS200/300 Digital

Notes:

- Pointek CLS200/300 is available in two models: the standard model, and the digital model with integral local display. For information on the CLS200/300 Standard, please see manual 7ML19985JH02.
- Pointek CLS200/300 is to be used only in the manner outlined in this instruction manual, otherwise protection provided by the equipment may be impaired.
- This product is intended for use in industrial areas. Operation of this equipment in a
 residential area may cause interference to several frequency based
 communications.

Pointek CLS200/300 is a versatile capacitance switch, ideal for level detection of interfaces, solids, liquids, slurries, and foam, and for simple pump control. The switch responds to the presence of any material with a relative dielectric constant of 1.5 or more by detecting a change in capacitance, which is registered as a change in oscillating frequency.

The switch can be set to detect before contact or on contact with the probe. The design of the CLS200 Digital allows the instrument to operate independently of the tank wall or pipe, so it does not require an external reference electrode for level detection in a non-conductive vessel such as concrete or plastic¹. The CLS300 Digital requires a connection to earth/ground for effective capacitance measurement.

The power supply is galvanically isolated and can accept voltages in the range 12 to 30 V DC (12 to 24 V DC for Intrinsically Safe (IS) models), depending on the application. The materials used in the probe construction provide a high level of chemical resistance, and an excellent temperature rating on the process wetted portion of the probe: up to 125 °C (257 °F) for the CLS200 and 400 °C (752 °F) for the CLS300.

unit on a network

standalone unit

Page 5

^{1.} Refer to *Approvals* - *CLS200* on page 13 for CE applications.

Modular design and construction provide a wide choice of configurations, including rod, cable, and sanitary versions. Pointek CLS200/300 Digital can be used either:

- as a standalone unit, programmed locally using the local user interface, or
- installed as part of a network, programmed remotely using SIMATIC PDM on a Profibus PA network (or locally using the Local User Interface).

Applications

Level Detection

Pointek CLS200/300 is designed for level detection and simple pump control in a variety of applications:

- Liquids, solids (powder and granules), slurries, interface detection (for example, oil/ water), and foam detection
- Foods and pharmaceuticals
- Chemical and petrochemical
- High pressure and temperature

Alarm signalling

The solid-state switch can be set to react either to a diagnosed fault in the instrument, or to a change in the process level.

Fault Signalling

Pointek CLS200/300 can actively report information on its own status via PROFIBUS PA when used as part of a network, or by means of a pre-defined output status at the solid state switch and on the Local User Interface (LUI).

Features

- Potted construction protects components from shock, vibration, humidity, and/or condensation
- High chemical resistance on probes
- Level detection independent of tank wall/pipe (CLS200 only)¹
- Freely programmable set up covers wide range of applications/materials
- Integrated Local User Interface (LUI) for ease of use
- Rigid and cable versions available
- Communication via PROFIBUS PA (profile version 3.0, Class B)
- Intrinsically Safe (IS) transmitter design for hazardous areas (requires external barrier or IS power supply)
- Patented Active Shield minimizes the effect of product build-up at the sensor mounting point (CLS300 only)

^{1.} Refer to *Approvals* - *CLS200* on page 13 for CE applications.

System Implementation

Pointek CLS200/300 supports PROFIBUS communication protocol, and SIMATIC PDM software.

Programming

Pointek CLS200/300 carries out its level measurement function according to the set of built-in parameters. You can make parameter changes locally via the local user interface, or from a remote location via a PC using SIMATIC PDM software.

Note: Siemens Milltronics makes every attempt to ensure the accuracy of these specifications, but reserves the right to change them at any time.

Pointek CLS200/300

Power

٠	bus voltage	
	- general purpose	12 to 30 V DC, 12.5 mA
	- Intrinsically Safe	12 to 24 V DC, 12.5 mA
٠	starting current \leq current of normal operation	yes
٠	fault current (max. uninterrupted current	
	minus current of normal operation)	0 mA
٠	fault disconnect equipment (FDE)	yes
٠	auxiliary source	bus powered
٠	separate supply necessary	no

Performance

Repeatability

approx. $\pm 2 \text{ mm}$ for a conductive fluid

Interface

Configuration

- locally, using local user interface (LUI), for standalone operation, or
- remotely, using SIMATIC PDM on a Profibus PA network

Local Digital Display

• LCD

Output (bus) PROFIBUS PA (IEC 61158 CPF3 CP3/2) Bus physical layer: IEC 61158-2 MBP(-IS) · polarity-independent yes simultaneous communication with Master Class 2 4 (max.) Cyclic User data (normal operation) • byte output 2 bytes representing one value byte input 0 device profile **PROFIBUS PA Profile for Process Control** Devices Version 3.0, Class B function blocks 1 discrete input 1

 logical inversion 	parameterizable
Simulation functions	
output	yes
 input 	yes
• failsafe	parameterizable (last usable value, substitute value, erroneous value)
Block Structure	

- physical block transducer block1
- transducer block discrete input
 yes
- monitoring measuring limits yes

Alarm Outputs

•	solid-state switch	galvanically isolated non-polarity sensitive transistor rated 30V DC or peak AC max., 82mA max
		voltage drop below 1 V typical @ 50 mA
•	time delay	controlled by software
	-	2 delay timers: alarm ON delay and alarm OFF delay)
•	hysteresis	100% adjustable, in 1 count increments ¹ on the display
•	failsafe operation	Failsafe High or Failsafe Low
•	terminal	removable terminal block, 2.5 mm ² max.

Diagnostics

•	input	reed contact: for test function
•	input	reed contact: for test function

Specifications

^{1.} The frequency value is always represented in 'counts': see *Counts* on page 73 for more detail.

Mechanical

Electrode - CLS200 Digital

Model	Length (max)	Process Connections	Extension	Tensile (max)	Wetted Parts
Rod	5500 mm/ 216.5″	 Threaded: 34," 1", or 1 ½" BSPT (R), BSPP (G) or NPT; 1 ¼" NPT only Welded flange: ASME: 1,"1 ½,"2," 3" or 4" DN 25, 40, 50, 80 or 100 	316L ¹ stainless steel	n/a	 316L¹ stainless steel (optional PFA coating) FKM seals (optional FFKM) PPS probe (optional PVDF)
Sanitary	5500 mm/ 216.5″	1", 1 ½ ", 2,"2 ½" and 3″ sanitary clamp	316L ¹ stainless steel	n/a	 316L¹ stainless steel FKM seals (optional FFKM) PPS probe (optional PVDF)
Cable	30000 mm/ 1181.1"	 Threaded: ³/₄ ", 1", or 1 ½" BSPT (R), BSPP (G) or NPT; 1 ¼" NPT only Welded flange: ASME: 1, 1 ½, 2, 3" or 4" DN 25, 40, 50, 80 or 100 	FEP (Fluorinated Ethylene Polymer)	180 kg/ 400 lbs	 316L¹ stainless steel FEP jacketed cable FKM seals (optional FFKM) PPS probe (optional PVDF)

^{1.} Or 1.4404 material.

	Longth	Process	Tensile	
Model	Length (max)	Connections	(max)	Wetted Parts
Rod (19 mm/ 0.75″ dia.)	1000 mm/40"	 Threaded: 34," 1", or 1 ½" BSPT (R), BSPP (G) or NPT; 1 ¼" NPT only Welded flange: ASME: 1,"1 ½,"2,"3" or 4" DN 25, 40, 50, 80 or 100 	n/a	 316L¹ stainless steel FKM seals (optional FFKM) PFA lining on Active Shield PEEK isolators
Cable	25000 mm/ 985″	 Threaded: 1 ½" BSPT (R), BSPP (G) or NPT; 1 ¼" NPT only Welded flange: ASME: 1 ½",2",3" or 4" DN 40, 50, 80 or 100 	1900 kg/ 4188 lbs	 316L¹ stainless steel Active Shield and cable weight 316L¹ stainless steel cable (optional PFA jacketed cable) FKM seals (optional FFKM) PEEK isolators
High Temperature version	1000 mm/40"	 Threaded: ¾,"1", or 1 ½" BSPT (R), BSPP (G) or NPT; 1 ¼" NPT only Welded flange: ASME: 1,"1 ½,"2,"3" or 4" DN 25, 40, 50, 80 or 100 	n/a	• 316L ¹ stainless steel • Ceramic isolators

Electrode - CLS300 Digital

Active Shield Length (CLS300 only):

Active	Length		Minimum insertion length		
Shield	Threaded	Flanged	Rod version	Cable version	High Temp. version
Standard length	125 mm/4.92"	105 mm/4.13"	350 mm/13.78″	500 mm/19.69"	350 mm/13.78″
Extended shield	250 mm/9.84"	230 mm/9.06"	500 mm/19.69"	1000 mm/40"	500 mm/19.69"
Extended shield	400 mm/15.75"	380 mm/14.96"	750 mm/29.53"	1000 mm/40"	750 mm/29.53"

^{1.} Or 1.4404 material.

Enclosure

•	termination	removable terminal block, 2.5 mm ² max.
•	construction	powder-coated aluminum with gasket
•	optional thermal isolator	316L ¹ stainless steel
•	cable entry	2 x M20 thread (option: 1 x 1/2" NPT with adaptor,
		and 1 x plugged entry)
•	ingress protection	Type 4 / NEMA 4 / IP65 standard, IP68 optional

Note: The use of approved watertight conduit hubs/glands is required for Type 4 / NEMA 4, Type 6 / NEMA 6, IP68 (outdoor applications). For CE requirements the use of EMC rated cable entries is required for all CLS200 devices.

Weight

Weight varies based on configuration. For example:

compact Pointek CLS200, 1 kg (2.20 lb.) approx.
 100 mm (4") insertion length,
 ³/₄" process connection

Environmental

 location 	indoor/outdoor
• altitude	5000 m (16,405 ft.) max.
 ambient temperature 	–40 to 85 °C (–40 to 185 °F), (in potentially explosive
	atmospheres, note the temperature classes)
• LUI (local user interface)	–30 to 85 °C (–22 to 185 °F)
 storage temperature 	–40 to 85 °C (–40 to 185 °F)
 relative humidity 	suitable for outdoor (Type 4 / NEMA 4 / IP65 standard,
	IP68 optional)
 installation category 	1
 pollution degree 	4

Process

Note: Please see *Pointek CLS200 Digital Pressure versus Temperature Curves* on page 78 and *Pointek CLS300 Digital Pressure versus Temperature Curves* on page 80.

- relative dielectric 1.5 minimum constant (ϵ_r)
- CLS200 temperature:²
 - without thermal isolator ~-40 to 85 °C (–40 to 185 °F)
 - with thermal isolator -40 to 125 °C (–40 to 257 °F)

^{2.} at process connection

^{1.} Or 1.4404 material.

٠	CLS200 pressure (vessel):	
	- rod version	–1 to 25 bar g/–14.6 to 365 psi g (nominal)
	- cable version	-1 to 10 bar g/-14.6 to 150 psi g (nominal)
	 sliding coupling version 	-1 to 10 bar g/-14.6 to 150 psi g (nominal)
•	CLS300 temperature: ¹	
	- rod/cable version	–40 to 200°C (–40 to 392 °F)
	- high temperature version	–40 to 400 °C (–40 to 752 °F)
	5	· · · · · · ·

• CLS300 pressure (vessel): -1 to 35 bar g/-14.6 to 511 psi g (nominal)

Approvals

CLS200

 General Purpose Flameproof Enclosure with IS Probe Dust Ignition Proof with IS Probe 	CSA, FM, CE, C-TICK ATEX II 1/2 G EEx d[ia] IIC T6T4 ATEX II 1/2 D T100°C ATEX II 1/2 D T100°C CSA/FM Class II, Div. 1, Gr. E, F, G CSA/FM Class III T4
Explosion Proof Enclosure with IS Probe	CSA/FM Class I, Div. 1, Gr. A, B, C, D CSA/FM Class II, Div. 1 Gr. E, F, G CSA/FM Class III T4
Intrinsically Safe ²	ATEX II 1 G EEx ia IIC T6T4 ATEX II 1/2 D IP6X T100°C CSA/FM Class I, Div. 1, Gr. A, B, C, D CSA/FM Class II, Div. 1, Gr. E, F, G CSA/FM Class III T4
Non-incendive	CSA/FM Class II, Div. 2, Gr. A, B, C, D CSA/FM Class I, Div. 2, Gr. F, G CSA/FM Class II, Div. 2, Gr. F, G
Non-Sparking	ATEX II 3 G Ex nA II T6T4 ATEX II 2 D IP6X T100°C
• Marine	Lloyds Register of Shipping, Categories ENV1, ENV2 and ENV5
Others	Pattern Approval (China)

Note: EN 61326 (CE EMC) testing was conducted on the Pointek CLS200 while mounted in a metallic vessel and wired using shielded cable, where the cable was terminated in an EMC cable gland at the device entry point. In addition, units with a flange process connection were mounted using a metallic gasket.

^{1.} at process connection

^{2.} barrier or Intrinsically Safe power supply required for Intrinsically Safe protection

CLS300

- General Purpose CSA, FM, CE, C-TICK
- Dust Ignition Proof ATEX II 1/2 D, 2 D IP6X T100°C
- Dust Ignition Proof with IS Probe
- Flameproof Enclosure with IS Probe
- Explosion Proof with IS Probe
- Intrinsically Safe¹
- CSA/FM Class II, Div. 1, Gr. E, F, G CSA/FM Class III T4
 - ATEX II 1/2 G EEx d[ia] IIC T6...T4
 - ATEX II 1/2 D T100°C
- CSA/FM Class I, Div. 1, Gr. A, B, C, D
- CSA/FM Class II, Div. 1, Gr. E, F, G
- CSA/FM Class III T4 ATEX II 1 G EEx ia IIC T6...T4
 - ATEX II 1/2 D, 2 D IP6X T100°C CSA/FM Class I, Div. 1, Gr. A, B, C, D CSA/FM Class II, Div. 1, Gr. E, F, G
- CSA/FM Class III T4 Marine Lloyds Register of Shipping, Categories ENV1, ENV2 and ENV5
- Others Pattern Approval (China)

Note: EN61326 (CE EMC) testing was conducted on the Pointek CLS300 rod version while mounted in a metallic vessel and wired using shielded cable. Units with flange process connections were tested while mounted in a metallic vessel with a metallic gasket and with shielded cables.

^{1.} Barrier or Intrinsically Safe power supply required for Intrinsically Safe protection

Installation: Pointek CLS200 Digital

Notes:

- Installation shall only be performed by qualified personnel and in accordance with local governing regulations.
- This product is susceptible to electrostatic shock. Follow proper grounding procedures.
- The housing may only be opened for maintenance, local operation, or electrical installation.
- Before installing the instrument, verify that the environment complies with any restrictions specified on the product nameplate.
- To comply with CE EMC regulations, where applicable, the CLS200 should be installed in accordance with the testing details on page 13.

Handling Precautions

WARNING: To prevent damage, all CLS200 Digital units with a rod longer than 2 m (6.5 ft) must be handled as described below.

When lifting CLS200 from a horizontal position, support it at these three points:

Location

Recommended:

• Provide a sun shield to protect the transmitter from direct heat radiation.

Precautions:

- Avoid mounting Pointek CLS200 in locations subject to strong vibrations in the vicinity, whenever possible.
- Do not exceed the permissible ambient temperature limits (see *Environmental* on page 12 for details).

Mounting

For high level alarm (level exceeds normal process level):

- normally mounted into the vessel top, or
- mounted through the tank wall at the detection level

For low level alarm (level drops below normal process level):

mounted through the tank wall at the detection level

Pointek CLS200 typical configuration with extensions:

For high or low level alarm:

• designed for top mounting. The probe suspends vertically so that it reaches into the process at the desired detection level (high or low detection alarm).

Mounting Restrictions

Note:

- Keep the sensor at least 50 mm (2") away from any nozzle or tank wall.
- If multiple units are used, allow at least 100 mm (4") between them, to prevent interference.

Multiple Units

Sensors must be at least 100 mm (4") apart.

End View

CLS200 Dimensions

Dimensions for all versions of the Pointek CLS200 Digital can be found in *Appendix F: Dimensions - CLS200 Digital* starting on page 95.

Process Cautions

Cautions:

- The maximum allowable torque on a horizontally installed rod is 15 Nm.
- Keep unit out of path of falling material, or protect probe from falling material.

Caution: Consider material surface configuration when installing unit.

Caution: Avoid areas where material build up occurs.

Caution: Tensile load must not exceed probe or vessel rating (See *Tensile (max)* on page 10.).

Installation: Pointek CLS300 Digital

Notes:

- Installation shall only be performed by qualified personnel and in accordance with local governing regulations.
- This product is susceptible to electrostatic shock. Follow proper grounding procedures.
- The housing may only be opened for maintenance, local operation, or electrical installation.
- Before installing the instrument, verify that the environment complies with any restrictions specified on the product nameplate.
- To comply with CE EMC regulations, where applicable, the CLS300 should be installed in accordance with the testing details on page 14.

Location

Recommended:

• Provide a sun shield to protect the transmitter from direct heat radiation.

Precautions:

- Avoid mounting Pointek CLS300 Digital in locations subject to strong vibrations in the vicinity, whenever possible.
- Do not exceed the permissible ambient temperature limits (see *Environmental* on page 12 for details).

Mounting

For high level alarm (level exceeds normal process level):

- normally mounted into the vessel top, or
- mounted through the tank wall at the detection level

For low level alarm (level drops below normal process level):

mounted through the tank wall at the detection level

Angled mounting

Pointek CLS300 cable version:

The cable version is designed for top mounting. The cable suspends vertically so that it reaches into the process at the desired detection level (high or low detection alarm).

Mounting Restrictions

Note:

- Keep the sensor at least 50 mm (2") away from any nozzle or tank wall.
- If multiple units are used, allow at least 500 mm (20") between them, to prevent interference.

CLS300 Installation

Wall Restriction

Process Cautions

- The maximum allowable torque on a horizontally installed rod is 15 Nm.
- Keep unit out of path of falling material, or protect probe from falling material.
- Consider material surface configuration when installing unit.
- Tensile load must not exceed probe or vessel rating.

Note: Buildup of material in Active Shield area does not affect switch operation.

CLS300 Dimensions

Dimensions for all versions of the Pointek CLS300 Digital can be found in *Appendix G: CLS300 Digital Dimensions* starting on page 103.

Electrical Connection

- Observe the specifications of the examination certificate valid in your country.
- Observe the laws and regulations valid in your country for electrical installations in potentially explosive atmospheres.
- Refer to Appendix E: Hazardous Area Installation on page 91 if applicable.
- Ensure that the available power supply complies with the power supply specified on the product nameplate and specified in the examination certificate valid in your country.
- Shipping plugs in the cable inlets must be replaced by suitable screwtype glands or dummy plugs, which are appropriately certified for transmitters with explosion-proof protection.
- For CE installations, use a cable with a braided metallic shield (or armoured cable where applicable).
- The lid must not be opened in wet locations while the unit is powered. (A wet location is a location where water or another conductive fluid may be present and is likely to increase the risk of electric shock.)

Recommended Cable Entries (equivalents can be used)

General Purpose Cable Entry: M20 (A5E03252531) and $\frac{1}{2}"$ NPT (A5E03252530)

- 1. Strip cable and expose braided shield.
- 2. Feed cable through dome nut and clamping insert. Fold braided shield over clamping insert. Make sure that braided shield overlaps the O-ring by 3/32" (2 mm) and covers the entry 360 degrees.
- 3. Push clamping insert into body and tighten dome nut. Assemble into housing.

Hazardous Location Cable Entry: M20 (A5E03252528) and $\frac{1}{2}^{\prime\prime}$ NPT (A5E03252527)

Backnut
 Buiddle nut
 Reversible armour clamp
 Diaphragm seal/Armour spigot
 Cable guide
 Entry (with captive deluge seal)

- 1. Strip the cable to suit equipment and expose armour/braid.
- Push the cable through the diaphragm shield/armour spigot (4). Pre-fitted cable guide (4.1) can now be discarded. The diaphragm seal can be rolled back to ease assembly as required. Spread armour/braid over the diaphragm seal/armour spigot

(4) until the end of the armour/braid is up against the shoulder of the armour cone. Position the armour clamping ring (3).

- 3. Place the entry (5) and position over the diaphragm seal/armour spigot (4). Move the sub-assembly (1) and (2) up to meet the entry (5).
- 4. Hold the entry (5) in position with a wrench to prevent rotation. Hand tighten the middle nut (2) to the entry (5), and turn a further 1/2 to 3/4 turn with a wrench.

Note: Support the cable to prevent it from twisting. To ease the wiring inside the enclosure, it may be beneficial to strip the inner sheath of the cable.

- Unscrew the middle nut (2) and visually inspect that the armour/braid has been successfully clamped between the diaphragm seal/armour spigot and the armour clamping ring (3). If armour/braid is not clamped, repeat assembly. (Armour/braiding should be fitted 360 degrees around the entry.)
- 6. Reassemble the middle nut (2) onto the entry component (5). Tighten up the middle nut (2) until hand tight, then using a wrench, turn the nut through 1/4 turn. Tighten the backnut (1) to form a seal around the cable, then tighten a further full turn using a wrench. Ensure that the middle nut (2) does not rotate when tightening the backnut (1).

Note: The deluge seal on this gland locates on assembly and requires no further action. Locate shroud over cable gland, if applicable.

Connection to screw terminals

- 1. Loosen the lid clip and unscrew the lid of the enclosure.
- 2. Unscrew and lift up the digital display. (Loosen each screw two turns before completely loosening both, to keep the rubber retaining rings in place.)
- 3. Strip the cable jacket for approximately 70 mm (2.75") from the end of the power cable, and thread the wires through the gland.
- 4. Connect the wires to the Profibus PA/power connection terminals shown below; polarity is not important. The terminal can be removed and replaced to simplify connection.

Wiring: standalone

- 5. If you want to use the Alarm Output, connect the wires of an optional input to the Alarm Output terminals (polarity is not important). The terminal can be removed and replaced to simplify connection.
- 6. Ground the instrument according to local regulations.
- 7. Tighten the gland to form a good seal.
- 8. Replace the Local User Interface (LUI).
- 9. To adjust the transmitter locally, using the keypad, go to *Programming via the Local User Interface (LUI)* on page 32. After adjustment, replace the enclosure lid and tighten the lid clip.

Local Operation: Pointek CLS200/300 Digital (Standalone)

- Local operation gives you access to all the functions listed in the table on page 33, *Quick Reference: operating functions using input keypad.*
- An extended range of functions is available only via remote operation using PROFIBUS PA: see *PROFIBUS PA Parameters* on page 63.

Local User Interface (LUI)

You can program the transmitter using the input keypad, and view measuring results, error messages and modes of operation on the digital display.

Input keypad

Three keys **M**, $\uparrow\uparrow$ and $\downarrow\downarrow$, are located below the display (see *Programming via the Local User Interface (LUI)* on page 32). The keys are accessible when you open the lid. The lid must be closed again after programming.

LCD display (local operation)

The local digital display shows one of the following:

- the measured value and associated units
- the logical level (sensor covered/ uncovered)
- the numerical value and mode number
- an error message and status information.
- software revision number¹

- 1 Primary Reading (displays measured value, or logical level, or an error message)
- $2-{\sf Auxiliary}$ Reading (displays Units, or the Bar Graph, or Status [error code])
- 3- Indicator for Write Protection / Mode number/ Simulation
- 4 Down arrow indicates alarm output switch open
- 5 Negative sign
- 6 Up arrow indicates alarm output switch closed
- 7 Communication Indicator visible only when communications are in progress

^{1.} The current software revision is displayed for 1 to 2 seconds at startup on two successive screens which are immediately followed by RUN mode display.

RUN mode display

Measured value display

The default startup display is the measured value display. It shows the value (in counts¹) when Sensor (Sens) has been selected in Mode 13.

sensor uncovered

sensor covered

bar graph

Logical level display (output status)

The logical level display shows the value when the OUT parameter of the Discrete Input Function Block is selected in Mode 13.

sensor uncovered

sensor covered

Error message display

If hardware or software errors occur in the transmitter, the error message appears in the primary reading field.

A status code is displayed in the auxiliary display which indicates the type of error (see *Status* on page 55). This information is also available via the PROFIBUS interface.

Units

The corresponding unit is displayed in the auxiliary reading field when Electronics Temperature is selected in Mode 13.

^{1.} See *Counts* on page 73 for more details.
Bar graph

The Bar Graph represents the extent to which the sensor is covered during normal operation. It is displayed when one of the three following mode options is selected:

- OUT (output of the Discrete Input Function Block¹)
- PRIM (the Primary Value of the Transducer Block²)
- SENS (the discrete Sensor Value of the Transducer Block²)

The 0% and 100% Application Range settings terminate the Bar Graph at each end and are represented on the lower part of the graph. The two Switch Points (Falling Edge and Rising Edge) are indicated as black vertical lines on the upper part of the graph; Rising Edge is the is the point where the output state is switched on and Falling Edge is the point where it is switched off.

Example:

Assume that a vessel is being filled and the sensor is slowly being covered. Because the level is rising, switch point 2 (falling edge) will be passed without any change in the output occurring. If the level continues to rise, eventually switch point 1 (rising edge) will be reached, resulting in a state changeover.

This new state will remain unchanged until the vessel is being emptied and the probe uncovered. If the level falls so that switch point 2 (falling edge) is passed again, the output state will change once more.

Lock/Simulation Indicator

(In PROGRAM mode, this field displays the Mode number.)

- When a lock is enabled, either Li, Lc, LA, LL, is displayed (see *Lock*, page 71).
- When simulation (via PROFIBUS PA) is active, Si is displayed (see *Simulation*, on page 67).

^{1.} See *Discrete Input Function Block* on page 85.

^{2. .}See *Transducer Block (TB)* on page 85.

PROGRAM mode display (local operation).

- 1 numerical value
- 2 physical unit
- 3 Mode indicator
- 4 Rising (or Falling) indicator

Programming via the Local User Interface (LUI)

The keypad consists of three input keys below the display: ${\bf M}, {\bf \hat{\Pi}},$

and \Downarrow . A flashing digit indicates the position of the cursor.

 $\mathbf{M}-\mathbf{M}$ ode key

- $\hat{\Pi}$ increment key
- ${\Downarrow}-{\tt cursor}$ movement/accept value

Mode selection and adjustment

Note: Master Reset function and Condensed Status Setup are available only via SIMATIC PDM software package.

Editing non-numerical values

- To select a mode, press **M** (mode key).
- To select an option in a mode, press \pitchfork or \Downarrow to scroll forwards or backwards through the options. Press \bm{M} to select option.
- To switch to the next mode, press M again. To cycle forwards though the menu, press M repeatedly. To move backwards through the menu, hold M and tap ↑.

Editing numerical values:

Numerical values are always edited from the most significant digit first, and the cursor position is indicated by a flashing digit.

- To enable Edit function and to activate the cursor press \Uparrow or $\Downarrow.$
- To increment the value of the flashing digit, press $\Uparrow.$
- To move the cursor to the right press $\Downarrow.$
- After editing the least significant digit, press \Downarrow once again to store the edited value.
- To switch to the next mode, press **M**.

Quick Reference: operating functions using input keypad

Function	tion Mode Key function			Key function	Display, or explanation	
	#	Ma	$\qquad \qquad $	\downarrow	\Uparrow and \Downarrow	
Measured value display ^b						Measured value (selected in Mode 13)
Error display						Hardware or software error.
Sensor test	2		Either k	ey activates test		Displays GOOd or FAILd.
Rise Time	4		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Time in seconds. Range: 0.0 to 100.0 s
Fall Time	5		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Time in seconds. Range: 0.0 to 100.0 s
HW Write Protection	10		Either key	v activates keylock.	Hold for 5 seconds to release ^c	 – = disabled (parameter changes allowed) L = enabled (parameter changes inhibited)
Display Source	13	*	Scroll up or down to select an option.			Source of measured value: 0 = OUT (output); 1 = PRIM (primary value); 2= SENS (sensor); 3 = TMP E (electronics temperature)
Unit	14	*	Scroll up or down to select an option.			Select K, °C, °F, °R (if electronics temperature selected in Mode 13).
Node address (PROFIBUS only)	15		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Assign slave address on the PROFIBUS network (0 to 126). Recommended setting range 1 to 125.
PROFIBUS Ident Number	16		Scroll up or do	own to select an option.		Select device mode: 1 =according to profile; or, 2 = according to profile with full device specific support.
Application Range, Lower Limit / 0%	19		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Adjust lower limit of application range.

Function	on Mode		Key function			Display, or explanation
	#	Ма	Î	\downarrow	\Uparrow and \Downarrow	
Application Range, Upper Limit / 100%	20		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Adjust upper limit of application range.
Alarm output trigger	23	*	Scroll up or do	wn to select an option.		Select the source event to switch the alarm output. See <i>Mode 23: Alarm output trigger</i> <i>(default: dIAG)</i> , page 43.
Contact type	24	*	Scroll up or down to select an option.			Set contact functionality in case of event: (logical inversion of alarm output switch) - Make contact (CLOSE)/ Break contact (OPEn)
Switch Point 1 (Rising Edge) OFF to ON	25		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Set % of range at which switch will change from OFF to ON.
Switch Point 2 (Falling Edge) ON to OFF	26		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Set % of range at which switch will change from ON to OFF.
Local Status Text	27	*	Scroll up or do	wn to select an option.		Select presentation of status text. See <i>Mode</i> 27: Local Status Text (default: U_075), page 46.

^{a.} In Modes indicated by an asterisk (*), press M to store a selection. In other Modes, press to store numerical values.

^{b.} If **L** appears in the Mode indicator field of the display, the HW Write Protection is activated.

^{c.} If LA, LL, Lc or Li appears in the Mode indicator field of the display after releasing the HW Write Protection, there is an additional block on local operation via the bus. *Lock*, on page 71 explains how to release this using SIMATIC PDM. In measuring mode, if neither L, LA, LL, Lc or Li, appears in the Mode indicator display field, local operation is possible.

Status codes

Every measured value which can be displayed is given a status to identify its quality. If it is classified as Bad or Uncertain the text **Error** alternates with the measured value in the display and the status code alternates with the unit or Bar Graph.

If the status is **Bad** or **Uncertain**, either a status code or a status message is displayed in the auxiliary display. If the selection for Local Status text is **numeric** a numeric code will be displayed. If a language is selected, a text message will be displayed. (For details see *Mode 27: Local Status Text (default: U_075)* on page 46).

The status display has priority, and neither the physical unit nor the Bar Graph is visible if the status is Bad or Uncertain.

Examples:

LUI Status Code	Quality	Error
Bar graph displayed	Good	
G_164	Good	Maintenance required
U_075	Uncertain	Substitute value - Constant output
B_016	Bad	Sensor failure

The status codes can be found in *Status* on page 55.

Error messages

In the case of exceptional events, error messages can appear during local operation and are displayed for around 10 seconds after the occurrence of the error.

Error messages available			
Error code	Meaning	Corrective Action	
F_001	Local operation disabled	Release HW Write Protection	
F_002	Change of bus address not possible as the device is exchanging data with master class 1	End communication with master class 1	
F_003	Change of PROFIBUS Ident Number not possible as the device is exchanging data with master class 1	End communication with master class 1	
F_004	Value too large to fit in LCD display (>99999 or <-99999)	Change display value units	
F_008	Local adjustment of parameters blocked by SIMATIC PDM	Enable "Local operation" with SIMATIC PDM	

Mode 2: Sensor test (default: OFF)

Note: Sensor Test should only be initiated when the process value is stable. A dramatic change of level in the vessel could cause a sensor failure message.

The Sensor Test checks the circuitry including the sensor, the signal path from the sensor to the transmitter, and the transmitter itself. While the sensor test is active, the sensor value increases by a specific offset. This is verified by the electronics.

There are three methods of activating a sensor test:

- locally, using the keypad
- locally, using a magnet •
- remotely, via PROFIBUS PA

Keypad activated sensor test

- Select Mode 2.
- Press $\hat{\parallel}$ or \Downarrow to start the test.
- After a few seconds, the display shows **GOOd** or **FAILd**.
- Press M to exit.

Magnet-activated sensor test¹

To carry out a test without opening the lid or entering Mode 2, use a magnet.

- Bring the magnet close to the test area indicated on the housina.
- The sensor test starts, and finishes automatically after 10 seconds.
- The auxiliary reading displays either SENSOR TEST SUCCESSFUL, or SENSOR TEST FAILED, as rolling text.

Sensor test using PROFIBUS PA

Please see Sensor Test on page 72 for details.

Note: Output state does not change when sensor test is initiated.

Page 36

TEST

^{1.} Test magnet is supplied with the instrument.

Mode 4: Rise Time (default: 0.0 s)

Rise Time is a delay setting which adjusts the response time of the signal¹ to the sensor becoming covered (Rising Edge). It affects the Primary Value of the Transducer Block. Possible values range from 0.0 to 100.0 s, in 0.1 s intervals.

This symbol \int^{-1} to the left of the numerical value on the display indicates a Rise Time setting.

To set Rise Time:

- Select Mode 4.
- Press \uparrow or \Downarrow to open Edit Mode.
- Press \Uparrow to adjust the value digit by digit.
- Press \Downarrow to save the value.
- Press M to exit.

Mode 5: Fall Time (default: 0.0 s)

Fall Time is a delay setting which adjusts the response time of the signal¹ to the sensor becoming uncovered (Falling Edge). It affects the Primary Value of the Transducer Block. Possible values range from 0.0 to 100.0 s, in 0.1 s intervals.

This symbol to the left of the numerical value on the display indicates a Fall Time setting.

To set Fall Time:

- Select Mode 5.
- Press \uparrow or \Downarrow to open Edit Mode.
- Press ↑ to adjust the value digit by digit.
- Press \Downarrow to save the value.
- Press M to exit.

The bar graph, and numerical value in counts, continue to respond instantaneously to changes in level.

Mode 10: HW Write Protection (default: OFF, display – –)

Note: When HW Write Protection is enabled, **L** appears in the Mode display field, in normal measuring mode.

Protects parameters from unintentional modification. This prevents parameter changes both locally via the keypad and remotely via SIMATIC PDM. The parameters are still readable.

To enable HW Write Protection:

- Select Mode 10.
- Press \Uparrow or \Downarrow to activate keylock and to disable operation: L appears in the numerical value field.
- Press **M** to exit.

To disable HW Write Protection

- Select Mode 10.
- Hold \Uparrow and \Downarrow simultaneously for more than 5 seconds: L disappears from the numerical value field.
- Press M to exit.

Mode 13: Display Source (default: 0)

Determines which value will be displayed.

To select the display source from the options shown in the table below:

- Select Mode 13.
- Press \Uparrow or \Downarrow to select the value for the desired source.
- Press M to save the selection and exit

You can assign the physical unit in Mode 14, if Electronics Temperature is selected as the display source.

Display Source	Value	Auxiliary Reading	Units	Displayed Value
From Discrete Input Function Block: OUT	0	OUT	none	Bar graph and ON or OFF
From Transducer Block: Primary Value	1	PRIM	none	Bar graph and ON or OFF
From Transducer Block: Sensor Value	2	SENS	none	Bar graph and counts value
From Transducer Block: electronics temperature: Electronics temperature	3	TMP E	K, °C, °F, or °R	Temperature in units

Mode 14: Unit (default: °C)

Note: Mode 14 becomes available only after Electronics Temperature is selected in Mode 13.

If Electronics Temperature is selected as the display source in Mode 13, you can change the corresponding physical unit by selecting one of the following options:

Physical Unit	Display
K	K
٦°	°C
°F	°F
°R	°R

To set the physical unit:

- Select Mode 14: the primary reading field displays **Unit**, and the physical unit appears in the auxiliary reading field.
- Press \uparrow or \Downarrow to select the desired physical unit.
- Press M to save the selection and exit

Mode 15: Node address¹ (default: 126)

Sets the node address of the device on PROFIBUS. The permitted range is from 0 to 126. We recommend setting the range between 1 and 125.

To set the PROFIBUS node address:

- Select Mode 15. The current node address is shown in the primary reading field.
- Press \uparrow or \Downarrow to open Edit mode.
- Enter the node address in the permitted range: press ↑ to change the value of each digit, and press ↓ to move the cursor to the next digit.
- Press \Downarrow after editing the least significant digit, to terminate the procedure and to save the value.
- Press **M** to exit.

Note:

- While the device is in cyclic data exchange with a class 1 Master, it is not possible to change the address. Abort the cyclic communication to change the address.
- Ensure that you set a unique node address to the device. Otherwise, the devices with the same addresses will cause confusion on the bus.

^{1.} Applies to PROFIBUS PA applications only. If in standalone application (no network), leave the node address at the default value.

Mode 16: PROFIBUS Ident Number¹ (default: 1)

Determines which of two device operating modes to select. Pointek CLS200/300 Digital recognizes two operating modes in relation to the DP Master:

Mode	Description	
0	Conforms to profile version 3.0 Class B device with no extensions.	Generic: can substitute transmitters conforming to PROFIBUS PA profile 3.0, one Discrete Input Function Block.
1	Conforms to profile version 3.0 Class B device with extensions.	Device-Specific: full functional range of Pointek CLS200/300 with Discrete Input Function Block.

To set the device operating mode:

- Select Mode 16. The current device operating Mode (**0** or **1**) appears in the primary reading field.
- Press \Uparrow or \Downarrow to select the desired operating mode.
- Press **M** to save the selection and exit.

Mode 19: 0% Application Range setting

This point corresponds to the left limit of the bar graph in the digital display.

CLS200 0% Application Range setting

To adjust the 0% Application Range setting for CLS200:

- 1. Install the device in the process.
- 2. Use the **M** button to navigate to Mode 19.
- 3. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General	 dry solids low viscosity liquids	sensor uncovered; min. 100 mm (4") free space all around	
Demanding	 hygroscopic / wet solids high viscosity and high conductivity liquids 	sensor immersed then uncovered; but retaining max. possible material buildup	
Interface detection	 liquid A / liquid B foam / liquid 	sensor immersed in the material with the lowest dielectric constant	

Applies to PROFIBUS PA applications only. If in standalone application (no network), leave the node address at the default value.

- 4. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- 5. Press \Uparrow or \Downarrow to enter Edit Mode; the sensor value is frozen and ready for editing.
- 6. Set the sensor value to approximately 300 counts below the value obtained in step 4. Press ∩ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- 7. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 0% Application Range setting.
- 8. Press **M** to exit.

CLS300 0% Application Range setting

To adjust the 0% Application Range setting for CLS300:

- 1. Install the device in the process.
- 2. Use the **M** button to navigate to Mode 19.
- 3. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions
General	 dry solids low viscosity liquids	Material in tank should be at the lowest point it could reach during the normal process.
Demanding	 hygroscopic / wet solids high viscosity and high conductivity liquids 	Material in tank should be at the lowest point it could reach during the normal process. The sensor should have the minimum possible material build up.
Interface detection	 liquid A / liquid B foam / liquid 	Material in tank should be at the lowest point it could reach during the normal process.

- 4. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- 5. Press \Uparrow or \Downarrow to enter Edit mode; the sensor value is frozen and ready for editing.
- 6. Set the sensor value to 95% of the value obtained in step 4 (0.95 x counts). Press \uparrow to edit the value of each digit, and press \Downarrow to move the cursor to the next digit.
- 7. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 0% Application Range setting.
- 8. Press **M** to exit.

Mode 20: 100% Application Range setting

This point corresponds to the right limit of the bar graph in the digital display.

CLS200 100% Application Range setting

To adjust the 100% Application Range setting for CLS200:

1. Install the device in the process.

- 2. Use the **M** button to navigate to Mode 20.
- 3. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions
General	 dry solids low viscosity liquids 	sensor fully covered
Demanding	 hygroscopic / wet solids high viscosity and high conductivity liquids 	sensor fully covered
Interface detection	 liquid A / liquid B foam / liquid 	sensor immersed in the material with the highest dielectric constant

- 4. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- 5. Press \Uparrow or \Downarrow to enter Edit Mode; the sensor value is frozen and ready for editing.
- 6. Set the sensor value to approximately 1000 counts above the obtained in step 4. Press ∩ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- 7. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 100% Application Range setting.
- 8. Press M to exit.

CLS300 100% Application Range setting

To adjust the 100% Application Range setting for CLS300:

- 1. Install the device in the process.
- 2. Use the **M** button to navigate to Mode 20.
- 3. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General	 dry solids low viscosity liquids	Material in tank should be at the highest point it could reach during the normal process.	
Demanding	 hygroscopic / wet solids high viscosity and high conductivity liquids 	Material in tank should be at the highest point it could reach during the normal process.	
Interface detection	 liquid A / liquid B foam / liquid 	Sensor immersed in the material with the highest dielectric constant	

- 4. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- 5. Press \Uparrow or \Downarrow to enter Edit mode; the sensor value is frozen and ready for editing.
- 6. Set the sensor value to 105% of the value obtained in step 4 (1.05 x counts). Press \uparrow to edit the value of each digit, and press \Downarrow to move the cursor to the next digit.

- 7. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 100% Application Range setting.
- 8. Press **M** to exit.

Mode 23: Alarm output trigger (default: dIAG)

The alarm output (solid-state switch) can be forced to switch for one of several reasons. The table below lists the possible triggers:

Selection message	Trigger description	Cause	Remark
OFF	Deactivated		
dIAG Diagnosis (diagnostic interrupt)		Sensor Value above sensor range	
		Sensor Value below sensor range	
		Electronics temperature above nominal range	
		Electronics temperature below nominal range	
		Memory check of RAM, ROM, EEPROM not passed (test running in background)	
OUt_d	Output Value (process interrupt)	Logical Level (OUT parameter)	Affected by Application Range, upper and lower limits; Rise Time; Fall Time; and Inversion
ALErt	Diagnostic Alarm Limit exceeded	Sensor Value higher than Diagnostic Alarm upper limit.	Diagnostic Alarm Limits are set with SIMATIC PDM

To select the trigger which will force the alarm output to switch:

- Select Mode 23. The current selection (**OFF**, **dIAG**, **Out_d**, or **ALErt**) appears in the primary reading field.
- Press \Uparrow or \Downarrow until the desired selection message appears.
- Press **M** to save and exit.

Mode 24: Contact type (default: CLOSE)

The solid state switch alarm output can function in one of two ways:

- Make contact (close)
- Break contact (open)

To select the contact type.

- Select Mode 24. The current contact type (**OPEn** or **CLOSE**) appears in the primary reading field.
- Press \Uparrow or \Downarrow to select the desired contact type.
- Press **M** to save and exit.

WARNING: If you change this parameter, the position of the switch changes immediately. Adapted applications or devices can react unintentionally.

Note: This adjustment is independent of the Inversion Output parameter of the Discrete Input Function Block, which can only be set remotely.

Mode 25: Switch Point Off to On/Switch Point 1/Rising Edge (default: 55%)

Note: Initial setup can be carried out prior to mounting into the process, but it is extremely important to calibrate the unit and adjust the sensitivity on the product itself.

Allows you to adjust the switch behavior by setting the percentage of the Application Range (defined in Mode 19 and Mode 20) at which point the logical switch will change from Off to On.

This symbol \int^{1} appears to the left of the numerical value to indicate a Rising Edge value.

Switch Point 1 must have a value greater than or equal to the value for Switch Point 2. If you enter a lower value, Switch Point 2 will be adjusted to the same value.

The permitted range is limited by the distance of the Switch Point to the next Measuring Limit.

To view the current setting for Switch Point 1:

- Select Mode 25.
- The current setting appears in the primary reading field as a percent of the Application range (0 to 100%).
- Press **M** to exit, or:

To adjust the setting:

- Press \Uparrow or \Downarrow .
- The display switches to the current measured Sensor Value as a percent of the Application Range (0 to 100%).
- Press \Uparrow or \Downarrow to open Edit mode: the Sensor value is frozen.
- Press ↑ to edit the value of each digit, and press ↓ to move the cursor to the next digit.

- After editing or leaving the least significant digit unchanged, press \Downarrow to terminate procedure and save the new value.
- You see the new setting for Switch Point 1.
- Repeat the process, or press **M** to exit.

Mode 26: Switch Point On to Off/ Falling Edge (default: 45%)

Note: Initial setup can be carried out prior to mounting into the process, but it is extremely important to calibrate the unit and adjust the sensitivity on the product itself.

Allows you to adjust the switch behavior by setting the percentage of the Application Range (defined in Mode 19 and Mode 20) at which point the logical switch will change from ON to OFF.

This symbol 'q appears to the left of the numerical value to indicate a Falling Edge value.

Switch Point 2 must have a value less than or equal to the value for Switch Point 1. If you enter a higher value, Switch Point 1 will be adjusted to the same value.

To view the current setting for Switch Point 2:

- Select Mode 26.
- The current setting appears in the primary reading field as a percent of the Application Range (0 to 100%).
- Press **M** to exit, or:

To adjust the setting:

- Press \Uparrow or \Downarrow .
- The display switches to the current measured Sensor Value as a percent of the Application Range (0 to 100%).
- Press \Uparrow or \Downarrow to open Edit mode: the Sensor value is frozen.
- Press ↑ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- After editing or leaving the least significant digit unchanged, press ↓ to terminate procedure and save the new value.
- You see the new setting for Switch Point 2.
- Repeat the process, or press **M** to exit.

Mode 27: Local Status Text (default: U_075)

Sets the format for representing Sensor Status. The default setting is a numeric format: one letter followed by an underscore and a decimal figure representing the status code (e.g. U_075).

You can select between the numeric format described above, or text as English, German, French, Spanish, or Italian strings. The strings are represented as rolling text.

Language format	Display message
numeric	U_075
Italian	ItALI
Spanish	ESPAn
French	FrAnC
German	dEUtS
English	EnGLI

To select the status format:

- Select Mode 27.
- The current setting is shown in the primary reading field.
- Press \uparrow or \Downarrow to select a new format.
- Press M to save and exit.

CLS200 Digital Switching Point Setup

Use the following procedure to set up the switch point for the CLS200 Digital model.

- 1. Set the 0% Application Range Setting (Mode 19):
 - a. Install the device in the process.
 - b. Use the M button to navigate to Mode 19.
 - c. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General • dry solids • low viscosity liquids		sensor uncovered; min. 100 mm (4") free space all around	
Demanding • hygroscopic / wet solids • high viscosity and high conductivity liquids		sensor immersed then uncovered; but retaining max. possible material buildup	
Interface detection • liquid A / liquid B • foam / liquid		sensor immersed in the material with the lowest dielectric constant	

- d. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts.
- e. Press \Uparrow or \Downarrow to enter Edit Mode; the sensor value is frozen and ready for editing.

- f. Set the sensor value to approximately 300 counts below the value of the current reading. Press ↑ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- g. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 0% Application Range setting.
- h. Press M to exit.
- 2. Set the 100% Application Range setting (Mode 20):
 - a. Install the device in the process.
 - b. Use the **M** button to navigate to Mode 20.
 - Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General	 dry solids low viscosity liquids 	sensor fully covered	
Demanding	 hygroscopic / wet solids high viscosity and high conductivity liquids 	sensor fully covered	
Interface detection • liquid A / liquid B • foam / liquid		sensor immersed in the material with the highest dielectric constant	

- d. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts.
- e. Press \Uparrow or \Downarrow to enter Edit Mode; the sensor value is frozen and ready for editing.
- f. Set the sensor value to approximately 1000 counts above the value of the current reading. Press ↑ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- g. After editing the least significant digit (or leaving it unchanged), press \Downarrow to terminate the procedure and save the new value. The display now shows the new value for the 100% Application Range setting.
- h. Press **M** to exit.
- 3. Adjust the Off to On switch point (Mode 25):
 - a. Use the **M** button to navigate to Mode 25.
 - b. Set the value to 55% as a starting point.
- 4. Adjust the On to Off switch point (Mode 26):
 - a. Use the **M** button to navigate to Mode 26.
 - b. Set the value to 45% as a starting point.

Note: A minimum hysteresis (difference between the Off to On switch point and the On to Off switch point) of 10% must be maintained for reliable operation. In some situations it may be desirable to increase the hysteresis between the two switch points to prevent false tripping (e.g. turbulence in the process).

5. Adjust the other parameters of the device as desired.

CLS300 Digital Switching Point Setup

Use the following procedure to set up the switch point for the CLS300 Digital model.

- 1. Set the 0% Application Range Setting (Mode 19):
 - a. Install the device in the process.
 - b. Use the **M** button to navigate to Mode 19.
 - c. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General • dry solids • low viscosity liquids		Material in tank should be at the lowest point it could reach during the normal process.	
 hygroscopic / wet solids high viscosity and high conductivity liquids 		Material in tank should be at the lowest point it could reach during the normal process. The sensor should have the minimum possible material build up.	
Interface detection • liquid A / liquid B • foam / liquid		Material in tank should be at the lowest point it could reach during the normal process.	

- d. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- e. Press \Uparrow or \Downarrow to enter Edit mode; the sensor value is frozen and ready for editing.
- f. Set the sensor value to 95% of the value obtained in step 1d (0.95 x counts). Press \uparrow to edit the value of each digit, and press \downarrow to move the cursor to the next digit.
- g. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 0% Application Range setting.
- h. Press **M** to exit.
- 2. Set the 100% Application Range setting (Mode 20):
 - a. Install the device in the process.
 - b. Use the **M** button to navigate to Mode 20.
 - c. Set up the process to provide the recommended condition for your process from the table below:

Application	Material	Setup conditions	
General	 dry solids low viscosity liquids	Material in tank should be at the highest point it could reach during the normal process.	
Demanding • hygroscopic / wet solids • high viscosity and high conductivity liquids		Material in tank should be at the highest point it could reach during the normal process.	
Interface detection • liquid A / liquid B • foam / liquid		Sensor immersed in the material with the highest dielectric constant	

- d. Press \Uparrow or \Downarrow . The display switches to the current measured sensor value in counts. Record the count value.
- e. Press \Uparrow or \Downarrow to enter Edit mode; the sensor value is frozen and ready for editing.
- f. Set the sensor value to 105% of the value obtained in step 2d (1.05 x counts). Press ↑ to edit the value of each digit, and press ↓ to move the cursor to the next digit.
- g. After editing the least significant digit (or leaving it unchanged), press ↓ to terminate the procedure and save the new value. The display now shows the new value for the 100% Application Range setting.
- h. Press M to exit.
- 3. Determine the switch point:
 - a. Bring the process material to the desired switching level in the process.
 - b. Record the count value displayed on the device.
 - c. Calculate the trip point as a percent of process range:

trip point (%) = $\frac{(\text{counts recorded in step 3b} - M19)}{(M20 - M19)} \times 100$

- 4. Adjust the Off to On switch point (Mode 25):
 - a. Use the **M** button to navigate to Mode 25.
 - b. Set the value to 5% above the trip point percentage calculated in step 3c as a starting point.
- 5. Adjust the On to Off switch point (Mode 26):
 - a. Use the **M** button to navigate to Mode 26.
 - b. Set the value to 5% below the trip point percentage calculated in step 3c as a starting point.

Notes:

- A hysteresis (difference between the Off to On switch point and the On to Off switch point) of 10% is used as an example of a typical setup. In some situations it may be desirable to increase the hysteresis between the two switch points to prevent false tripping (e.g. turbulence in the process).
- All parameters should be set up to account for a possible deviation of ±1% of the actual measurement under reference conditions.
- 6. Adjust the other parameters of the device as desired.

Wiring: connecting CLS200/300 Digital to a PROFIBUS PA network

Electrical Connection

- Observe the specifications of the examination certificate valid in your country.
- Observe the laws and regulations valid in your country for electrical installations in potentially explosive atmospheres.
- Refer to Appendix E: Hazardous Area Installation on page 91 if applicable.
- Ensure that the available power supply complies with the power supply specified on the product nameplate and specified in the examination certificate valid in your country.
- Shipping plugs in the cable inlets must be replaced by suitable screwtype glands or dummy plugs, which are appropriately certified for transmitters with explosion-proof protection.
- The lid must not be opened in wet locations while the unit is powered. (A wet location is a location where water or another conductive fluid may be present and is likely to increase the risk of electric shock.) Notes:
- Lay PROFIBUS PA cable separately from power cable with voltages greater than 60 V.
- Avoid locating Pointek CLS200/300 Digital near large electrical equipment wherever possible.
- Connect the cable shield to earth (for example, to the housing by means of a metallic screwed gland).

PROFIBUS PA connection to screw terminals

- 1. Loosen the lid clip and unscrew the lid of the enclosure.
- 2. Unscrew and lift up the digital display. (Loosen each screw two turns before completely loosening both, to keep the rubber retaining rings in place.)
- 3. Strip the cable jacket for approximately 70 mm (2.75") from the end of the cable, and thread the wires through the gland.
- 4. Connect the PROFIBUS PA wires to the terminals shown below (polarity is not important). The terminal block can be removed and replaced to simplify connection.
- 5. If you want to use the Alarm Output, connect the wires of an optional input to the Alarm Output terminals (polarity is not important). The terminal can be removed and replaced to simplify connection.
- 6. Ground the instrument according to local regulations.
- 7. Tighten the gland to form a good seal.
- 8. Replace the digital display.
- 9. If you want to adjust the transmitter locally using the keypad, go to *Programming via the Local User Interface (LUI)* on page 32: if not, replace the enclosure lid.

PROFIBUS PA connection via M12 plug

If an M12 connector is used, an M12 receptacle will be required to complete the bus connection to PROFIBUS PA.

Follow the instructions accompanying the female receptacle. The pin assignment is shown below.

^{1.} Although the PROFIBUS PA recommendation is usually to ground the shield on both the device side and the cable side (to avoid interference), in some cases, it may be preferable to ground one side only, to avoid ground loops.

This is particularly important if the device is mounted on cathodically protected tanks.

Remote Operation via PROFIBUS PA

Note: The following instructions assume that the user is familiar with PROFIBUS PA.

PROFIBUS PA is an open industrial protocol. Full details about PROFIBUS PA can be obtained from PROFIBUS International at <u>www.profibus.com</u>

Pointek CLS200/300 Digital is a Class B, Profile Version 3.01, PA device. It supports Class 1 Master for cyclic and acyclic data exchange, and Class 2 for acyclic services: (see *Cyclic versus Acyclic Data* on page 54 for details).

You will need a software package to configure Pointek CLS200/300. We recommend SIMATIC Process Device Manager (PDM) by Siemens. (You can find more information at <u>www.siemens.com/processinstrumentation</u>. Select SIMATIC PDM from the **Quick links to products** drop-down list on the right hand side.)

SIMATIC PDM

SIMATIC PDM is a software package used to commission and maintain Pointek CLS200/ 300 and other process devices.

SIMATIC PDM monitors the process values, alarms and status signals of the device and allows you to display, compare, adjust, verify, and simulate process device data.

Electronic Device Description (EDD)

In order to use SIMATIC PDM with PROFIBUS PA, you will need the Device Description for Pointek CLS200/300 which will be included with new versions of PDM. You can locate the Device Description in **Device Catalog**, under **Sensors/Level/Capacitive/Siemens Milltronics**. If you do not see **Pointek CLS200/300** under Siemens Milltronics, you can download it from the Pointek CLS200 or CLS300 product page of our web site. Go to: http://pia.khe.siemens.com/index.asp?Nr=4924 andclick on **Downloads**. After downloading the DD file, you need to open PDM and click **Options/Manage Device Catalog**.

Configuration

To configure a PROFIBUS Class 1 Master (for example, a PLC), you will need a GSD file.

The GSD file

The GSD file can be downloaded from either the Pointek CLS200 or CLS300 product pages on our web site: <u>www.siemens.com/level</u>, under **Downloads**.

Setting the PROFIBUS address

When your instrument is shipped, the PROFIBUS PA address is set to 126. You can set it locally (see *Mode 15: Node address (default: 126)*, on page 39) or remotely via the bus, using a parameterization tool such as SIMATIC PDM or HW-Config.

When cyclic data transfer with a Class 1 Master is in process, the address can only be changed via the bus.

Bus address (Device Address)

Values	Range: 0 to 126 (recommended setting between 1 and 125)
	Pre-set: 126

Bus Termination

Note: PROFIBUS PA MUST be terminated at both extreme ends of the cable for it to work properly. Please refer to the PROFIBUS PA User and Installation Guidelines (order number 2.092), available from www.profibus.com

Power Demands

To determine how many devices can be connected to a bus line, calculate the combined maximum current consumption of all the connected devices (12.5 mA for Pointek CLS200/ 300). Allow a current reserve for safety.

Cyclic versus Acyclic Data

When data is requested from a device via PROFIBUS PA, there are two data transfer methods. Cyclic data is requested and provided at every bus scan: acyclic data is requested and provided as needed.

- Input and output information is always requested at every bus scan and is set up as cyclic data.
- Configuration and maintenance information is needed infrequently, and is set up as acyclic data.

Acyclic Data Transmission

Pointek CLS200/300 supports up to four simultaneous connections by a Class 2 Master (C2 connection). It supports one connection by a Class 1 Master (C1 connection).

Cyclic Data Transmission

Cyclic data transmission transfers the user data relevant for process automation between the Class 1 Master (control or automation system) and the transmitter.

When you configure Pointek CLS200/300 on the PROFIBUS PA bus, there is one slot available for modules, and the Level Status module is automatically inserted.

Transmission of user data via PROFIBUS PA

The user data is continuously updated by the cyclic service of PROFIBUS PA. The user data is the OUT parameter of the Discrete Input Function Block and is composed of the Logical Level and Status bytes.

The 2 bytes must be read consistently¹, in a contiguous chunk: they must not be read byte by byte, and must not suffer an interrupt. If you are using an S7-300 / 400, you will need to use SFC14 DPRD_DAT: Read Consistent Data of a Standard PD Slave.

Byte	Out
Byte 1	Logical Level
Byte 2	Status ^a

^{a.} If Condensed status is turned on (default), then the condensed status appears here.

Logical Level

The Logical Level indicates the level of the material.

Inversion	Sensor Status	Logical Level
OFF	uncovered	= 0 (zero)
OFF	covered	= 1

Status

Status provides information via the status byte, on the usability of the measured value in the PLC/DCS², the device status, and additional process information (for example, process alarms).

Status Byte

The status byte is a standardized code returned by a PROFIBUS slave on every bus scan, along with the main process variable (output of the Analog Input Function Block).

- The status code indicates whether the process variable is valid or not.
- It also indicates other process-related information.

Status Codes

The codes for the Status bytes are listed in the following tables. Possible causes for an error are shown, along with measures to correct it.

If the language selected for the display is numeric, a status code will be displayed. If any other language has been selected, a status description will be displayed.

Note: For more detail, please consult the PROFIBUS PA User and Installation Guideline (order number 2.092), available for download from <u>www.profibus.com</u>.

^{1.} Consistent in this context means all-at-one-time.

^{2.} Programmable Logic Controller/Distributed Control System

	Status Codes for Good Quality					
Hex	Digital display	PDM display	Possible Cause	Corrective Measure		
80		Good	Normal operation			
84	G_132	Good; Active block alarm	A parameter relevant for the behavior of the device has been changed. The display is extinguished after 10 seconds.	Note to the control system		
8D	G_141	Good; Active critical alarm; Limit underflow	The Sensor Value exceeds the Lower Diagnostic Alarm Limit ^a	Check installation and sensor adjustment.		
8E	G_142	Good; Active critical alarm; Limit overflow	The Sensor Value exceeds the Upper Diagnostic Alarm Limit ^a	Check installation and sensor adjustment.		
A4	G_164	Good; Maintenance required	Maintenance interval has expired	Maintenance work, electronics servicing, or sensor servicing, is required.		

a. Set via PROFIBUS PA, in counts (see *Counts* on page 73 for details).

Status Codes for Bad Quality				
Hex	Digital display	PDM display	Possible Cause	Corrective Measure
00		Bad	Is used if no other information is available	
0F	B_015	Bad; Device failure; Value constant	Device has an irreparable Error.	Replace the electronics.
10	B_016	Bad; Sensor failure	Sensor test failed	Check sensor
11	B_017	Bad; Sensor failure; Limit underflow	Sensor shows an error. Measured level too small	Check sensor
12	B_018	Bad; Sensor failure; Limit overflow	Sensor shows an error. Measured level too high	Check sensor
1F	B_031	Bad; Out of service; Value constant	The function block is put out of order with a target mode command. A parameterized safety value is supplied.	For normal operation, reset the target mode to "AUTO".

	Status Codes for Uncertain Quality					
Hex	Digital display	PDM display	Possible Cause	Corrective Measure		
40	U_064	Uncertain	Sensor test in progress; no error detected.	To return to normal operation, deactivate sensor test.		
47	U_071	Uncertain, Last usable value, Value constant	"Fail Safe" input condition is met; the parameterized safety setting is set to "keep last valid value."	Consult the log of measured data.		
4B	U_075	Uncertain, Substitute value, Value constant	Value is not an automatic measured value. This identifies a parameterized, static substitute value or a preset value.	Consult the log of measured data.		
4F	U_079	Uncertain, initial value, Value constant	After run-up, an initial value is entered in the device memory.	Reject the value in the user program.		
50	U_080	Uncertain, Value inaccurate	Unreliable operating parameters or maintenance alarm	Check the operating parameters, e.g. the permitted ambient temperature. Immediate maintenance work required.		

Diagnostics

In addition to information on the usability of the measured value, Pointek CLS200/300 can actively report information on its own status. Diagnostics are important information, which an automation system can use to introduce remedial measures.

Standard PROFIBUS DP mechanisms are used to transport diagnostic information and actively report it to the Class 1 Master. For this, PROFIBUS DP provides a protocol to transmit information ranked higher than user data to the Class 1 Master.

The content of the "Device status" parameter from the physical block is reported and, in addition, information on whether a change of status has occurred (event arrived/ event gone). The diagnostic object consists of 10 bytes (4 bytes standard diagnostics and 6 bytes Extended diagnostics).

Diagnostic Messages					
Byte	Bit	Meaning when value = 1	Possible Cause	Corrective Measure	
	0				
	1				
	2				
Byte 0	3	Electronics temperature is too high	The temperature of the measuring transducer electronics (which is monitored by the measuring transducer) exceeds 85°C.	Reduce the ambient temperature to within the permissible range	
	4	Memory error	An error has been found. (During operation, the memories are constantly checked for check sum errors and read/ write errors.)	Replace the electronics.	
	5 Measurement failure	Either the sensor has failed, or the sensor limits are being exceeded.	Have the sensor checked by the service department.		
	6				
	7				

Standard diagnostics

			ostic Messages (cont'd)	Corrective
Byte	Bit	Meaning when value = 1	Possible Cause	Measure
Byte 1	0			
	1			
	2			
	3	Restart (goes to 0 after 10 s)	The supply current has been fed to the device; or a warm start ^a has been triggered using SIMATIC PDM; or the internal watchdog has expired.	Check the cabling and the power unit
	4	Coldstart ^b (goes to 0 after 10 s)	The device has been reset to its factory settings.	
	5	Maintenance required	A service interval has expired.	Service the device, and reset the messages using SIMATIC PDM.
	6			
	7	Ident Number violation	You have changed the parameter PROFIBUS Ident Number during cyclic operation. The device is reporting the violation of the Ident number and showing you a preliminary failure warning. In the case of a warm restart, the device will no longer participate in cyclical communication of reference data without a change in the system configuration.	Adjust the configuration data (change of GSD), so that it is consistent with the Ident number set in the device.
Byte 2	0	Maintenance alarm	Device requires maintenance	Maintenance action required
	1	Maintenance demanded	Device requires immediate maintenance or a failure will occur.	
	2	Function check		
	3	Invalid process conditions		
Byte 3	7	Extended diagnostics available		

^{a.} With a warm start, the volatile data is preserved.

^{b.} With a cold start, all volatile data is lost.

Extended diagnostics

Extended Diagnostic Messages				
Meaning	Corrective Action	Byte	Bit	
Electronic temperature exceeds permissible range	Bring temperature of electronics module to within allowed range		0	
Sensor value exceeds diagnostic alarm limits	Either adjust diagnostic alarm limits or remove cause of out of range sensor value		2	
Calibration timer, unacknowledged alarm	Perform calibration and timer will automatically be reset		3	
Calibration timer, unacknowledged warning		0	4	
Service timer, unacknowledged alarm	Perform service and reset timer using SIMATIC PDM		5	
Service timer, unacknowledged warning			6	
Sensor value exceeds sensor limits	Perform service on sensor or replace unit	0	6	
Sensor Test Running	Wait for sensor test to finish, then remove test magnet from device housing	2	7	
Memory checksum error	Device is defective; replace unit		1	
Sensor test failed	Sensor is defective; replace sensor		2	
Sensor value simulation	To return to normal operation, disable the simulation with SIMATIC PDM		3	
Simulation: Electronic temperature	To return to normal operation, disable the simulation with SIMATIC PDM		4	
Simulation: Digital input in simulation	To return to normal operation, disable the simulation with SIMATIC PDM	3	5	
Digital Input in Manual mode	To return to normal operation, disable the simulation with SIMATIC PDM; reset the block mode of the Digital Input Function Block		6	
Simulation: Diagnosis	To return to normal operation, disable the simulation with SIMATIC PDM		7	

Note: The instrument status can be simulated using SIMATIC PDM. This allows you to test the reaction of the automation system to errors.

Self tests

Pointek CLS200/300 carries out the following self tests:

Self Tests					
Self test function	Algorithm	Frequency	Diagnostic error message	Corrective measure	
Measure the electronics temperature	If electronics temperature exceeds 85 °C	Every measurement cycle/ 60 ms	Electronics temperature too high	Reduce ambient temperature to within permissible range	
RAM test	Writing and verifying every cell with a byte (walking one and walking zero ^a) to detect defect cells and crosstalk	45 s	Memory error	Replace the electronics.	
Code test	Summarizing the bytes and comparison with a checksum	45 s	Memory error	Replace electronics and, if necessary, measuring cell.	
Sensor test	If measurement returns a value outside the sensor range determined by Measuring Limits	every measurement cycle/ 60 ms	Measurement failure	Have sensor checked by service department.	
Check service timers	If a service timer reaches the parameterized warning or alarm limit	60 ms	Maintenance required	Carry out servicing and reset messages using SIMATIC PDM.	
Watchdog trigger	The program must pass specific checkpoints. If all checkpoints are not passed within a specific time, the watchdog timer expires and a restart will be carried out	2 s	Restart	Check cabling and power unit to ensure the power supply to Pointek CLS200/ 300	

^{a.} A walking one and zero is a method of checking each bit in each location of volatile memory.

Values of the DIAGNOSIS bit:

0 = not set

1 = set

Configuration Example

To configure and use PROFIBUS PA with an S7-300/ 400 PLC

- If Pointek CLS200/300 is not listed in the STEP 7 device catalog, you can download the DeviceInstall file from the Siemens Milltronics Web site and run it from your computer. Go to http://pia.khe.siemens.com/index.asp?Nr=4924 and click Downloads.
- 2. Add the Pointek CLS200/300 "rack": click and drag the Pointek CLS200/300 folder from the hardware catalog.
- 3. Fill the rack with desired modules, by dragging and dropping them from the hardware catalog.
- 4. After configuring PROFIBUS PA in steps 2 and 3, download it to the PLC.

Add code to the PLC program to read data consistently using the SFC14.

WARNING: It is essential to check settings during the process itself, and confirm that they are correct, before regular operation commences.

The full range of Pointek CLS200/300 functions is available only via remote operation using PROFIBUS PA.

To use PROFIBUS PA, you will need a PC configuration tool: we recommend SIMATIC PDM. For more information see *SIMATIC PDM* on 53.

Measured Values

In measuring operations, measured values such as the logical level are provided via PROFIBUS PA. They can be viewed via PROFIBUS PA, and on the LCD display. To view values via PROFIBUS PA open the menu View – Display, and select one of the following tabs:

Measured value source	Description
Output	Output value On (covered) or Off (uncovered)
TB ² Discrete Input Part 2	Discrete Sensor Value On (covered) or Off (uncovered) as well as Primary Value (On or Off)
TB ² Discrete Input Part 1	Sensor value represented in counts ¹ as well as a dynamic representation of level as a percentage of the application range.
Electronics Temperature	Internal temperature of the electronics.

For instructions on selecting the display source for the LCD, see *Display Source for local operation* on page 72.

² TB - Transducer Block

^{1.} For more detail see *Counts* on page 73.

Functions

The device menu gives you access to the following functions:

- Upload from/Download to the device
- Set Address
- Master Reset
- Write Locking
- Sensor Test
- Simulation
- Condensed Status Setup

Changing parameter settings

Note: Initial setup can be carried out prior to mounting into the process, but it is extremely important to calibrate the unit and adjust the sensitivity on the product itself.

- First launch SIMATIC PDM, connect to Pointek CLS200/300, and upload data from the device (the status fields change to Loaded).
- Adjust parameter values in the parameter value field.
- After adjusting the value, press Enter (the status fields read Changed).
- When you have completed the adjustments, open the menu Device Download data to Device then go to File – Save to save parameter settings offline (the status fields are cleared).

ân ân ⊕					
(CL5200	Parameter	Value	Unit	Status	
ntek CL5200	Pointek CLS200	`			
Identification Input	DD Version	1.01.08-000		Initial val	
Output	» Identification	1			
Local Display and Operation	» » Operation Unit				
Maintenance and Diagnosis	TAG	Pointek CLS200			
Alarm Output	Descriptor			Initial val	
Certificates and Approvals	Message			Initialyal	
	» » Device			X	
	Manufacturer	Siemens Milltronics		Initial val	
	Product designation	Pointek CLS200		Initial val	
	Device Serial Num	0		Initial val	`
	Software Revision	0300.01.01		Initial val	value
	Hardware Revision	01		Initial val	value
	Profile Revision	3.0		Initial val	
	PROFIBUS Ident Number	Manufacturer specific		Initial val	column
	Installation Date	XX.XX.XXXX		Initial val	
	Ordemumber	7ML550		Initial val	
	» » Parametrization				
	Date			Initial val	
	Executor			Initial val	
	» Input			11-11-11-11-11-11-11-11-11-11-11-11-11-	
	» » Transducer Block: Dis	crete Input			
	» » » Measuring Limits				
	Lower Value	5714	digits	Initial val	
	Upper Value	53333	digits	Initial val	
	» » » Range of Application	on			
	0%	5714	digits	Initial val	
	100%	53333	digits	Initial val	
	» » » Switch Behaviour				
	Switch Point 1 (Off->On)	75	%	Initial val	
	Switch Point 2 (On->Off)	25	%	Initial val	
	» » » Delay				
	Rise Time (Off->On)	0	8	Initial val	
	Fall Time (On->Off)	0	8	Initial val	
	» » » Diagnostic Alarm L				
	Lower Limit	5714	digits	Initial val	
	Upper Limit	53333	digits	Initial val	
	» » Transducer Block: Ele	ctronics Temperature			
	» » » Measuring Limits				
	Temperature Unit	*C		Initial val	
	Lower Value Min	-40.0	°C	Initial val	
	Upper Value Max	85.0	°C	Initial val	
	» Output				
	» » Function Block: Discre	ete Input			
	» » » Inversion				
	Inversion Output	Off		Initial val	
	» » » Fail Safe Mode				

Filling level status:

Adjust 0 % application range setting

The lower limit of the application range (0%) corresponds to the left limit of the bar graph in the digital display.

For reliable and accurate detection of the process material, select the example in the table below that most closely resembles your application, and follow the setup procedure.

Application	Material	Setup procedure
General applications	dry solids low viscosity liquids	Sensor uncovered and a minimum of 100 mm (4") free space all around
Demanding applications	hygroscopic / wet solids high viscosity and high conductivity liquids	Sensor immersed and then uncovered, but retaining as much build up of material as possible on the sensor.
Interface detection	liquid A / liquid B foam / liquid	Immerse the sensor in the material that has the lowest relative dielectric constant.

- 1. Follow the setup procedure that most closely resembles your application.
- Open the menu View Display and select the tab Transducer Block: Discrete Input (Part 1). Make a note of the Sensor_Value (digits)
- 3. Close **Display** window, and enter the sensor value (recorded in the previous step) to the Value field:

> Input > Transducer Block: Discrete Input > Range of Application> 0%. Press Enter: the status field reads Changed.

e Device View Options Help				
1 3 mm 0 0 0 11 M				
Pointek CLS200	Parameter	Value	Unit	Status
E Pointek CL5200	» » » Range of Applicatio	n		
Identification	0%	5714	digits	Initial val
È-III Input È-III Transducer Block: Discrete Input	100%	53333	digits	Initial val
Switch Dehviour Delay Alem Linits Tergrouts: Alem Linits Tergrouts: Alem Linits Tergrouts: Block: Block: Decinics: Temperature Output Local Display: and Operation Maintenance and Disposis Alem Output Certificates and Approvals				

4. If no more settings need adjusting, download the data to the device and save the parameter settings offline (the status fields go blank). Otherwise, continue to adjust other parameters as required.

Adjust 100 % application range setting

Adjusts the upper limit of the application range (100%). This point corresponds to the right limit of the bar graph in the digital display.

For reliable and accurate detection of the process material, select the example in the table on page 66 that most closely resembles your application, and follow the setup procedure.

Application	Material	Setup procedure		
General applications	dry solids low viscosity liquids	Sensor fully covered		
Demanding applications	hygroscopic / wet solids high viscosity and high conductivity liquids	Sensor fully covered		
Interface detection	liquid A / liquid B foam / liquid	Immerse the sensor in the material that has the highest relative dielectric constant.		

- 1. Follow the setup procedure that most closely resembles your application.
- Open the menu View Display and select the tab Transducer Block: Discrete Input (Part 1). Make a note of the Sensor_Value (digits)
- Close Display window, and copy the sensor value to the parameter view field: Input > Transducer Block: Discrete Input > Range of Application > 100%. Press Enter: the status field reads Changed.
- If no more settings need adjusting, download the data to the device and save the parameter settings offline (the status field goes blank). Otherwise, continue to adjust other parameters as required.

Inversion

When Inversion Output = \mathbf{On} , the level status undergoes a logical inversion. If you want to invert the logic of the level status:

- Go to Output > Function Block: Discrete Input > Inversion Output > Off or On
- Press Enter: the status field reads Changed

Delay

You can adjust the timing behavior of the transmitter using two independent delay times.

- **Rise Time (Off to On)** determines the delay of the signal flow from the moment the sensor becomes covered until the Primary Value is set.
- Fall Time (On to Off) determines the delay of the signal flow from the moment the sensor becomes uncovered until the Primary Value is reset.

The delay timers have a range of values from 0.0 to 100.0 seconds.

- Go to Input > Transducer Block: Discrete Input > Delay > Rise Time (Off to On) and set the value from 0 to 100 seconds.
- Go to Fall Time (On to Off), and set the value from 0 to 100 seconds.
• Press Enter: the status field reads Changed.

Note: If the sensor status changes before the delay interval is complete, the timer is reset to its initial value and restarted.

Failsafe Mode

If the Transducer Block delivers a measured value accompanied by a status message classifying the quality as bad (for example **Bad, sensor failure**), the Discrete Input Function Block can react with one of three possible preset options.

Failsafe Mode	Description
The default value is used as the output value.	The predefined preset safety value is output (status code U_075).
Store the last valid output value.	The last valid output value is output (status code U_071).
The calculated output value is incorrect.	The bad output value is accompanied by the status which the Transducer Block assigns to it (B_0xx).

Set the fault behavior in the Discrete Input Function Block:

- Go to Output > Function Block: Discrete Input > Fail Safe Mode > Fail Safe Mode and select one of the 3 options.
- Press Enter: the status field reads Changed

You can use SIMATIC PDM to determine the fault location by looking at the Input and Sensor Values of the Transducer Block.

Simulation

Simulation functions are helpful when you are installing the transmitter.

- You can create process values without recording actual values.
- You can use the full range of values of the simulated process values.
- You can simulate errors.

The LCD displays Si in the Mode display when Simulation is activated.

Output simulation

Output simulation allows you to provide process values for the cyclic class 1 Master, to test how the automation program processes those values.

Carry out the following settings:

- 1. Open the Device Menu Simulation.
- 2. Select the register Output.
- 3. Set the target mode to MAN (manual).
- 4. Enter the desired output value, the quality and the status.

- 5. Transfer the settings to the device.
- 6. You can view the output behavior, for example with SIMATIC PDM (open the View Menu **Display**).
- 7. To return to normal operation, reset the target mode to AUTO and press Transfer.

Input (Primary Value) simulation

Input Value simulation allows you to test the effects on the Primary Variable of your preset inversion and failsafe settings, and see how the output value is affected.

Carry out the following settings:

- 1. Open the Device Menu Simulation
- 2. Select the register Input.
- 3. Set the simulation mode to **Enabled**.
- 4. Enter the desired input value, the quality and the status.
- 5. Transfer the settings to the device.
- 6. You can view the output behavior, for example with SIMATIC PDM (open the View Menu **Display**).
- 7. To return to normal operation, reset the simulation mode to **Disabled** and press **Transfer**.

Sensor Value Simulation

By simulating the Sensor Value as a fixed value or as a parameterizable slope, you can test:

- the reaction to the Measuring Limits being exceeded
- the logic switch behavior
- the behavior of the delay timers

With a parameterizable slope you can make the simulation value dynamic. It runs from a starting value to an end value in a step function, dwelling on each step for the preset period of time. At the end value the direction is reversed.

Parameterizable slope

Carry out the following settings:

- 1. Open the Device Menu Simulation.
- 2. Select the register **Sensor Value**.
- 3. Set Simulation Sensor Value, then set the parameters:
 - for simulation mode fixed, enter a Sensor Value
 - for simulation mode **ramp**, adjust the ramp parameters
- 4. Transfer the settings to the device.
- You can view the behavior of the Sensor Value Discrete, the Input (Primary) Value, and the Output, in SIMATIC PDM (open the View Menu Display, and select the register Transducer Block: Discrete Input Part I).
- 6. To return to normal operation, turn off Simulation Sensor Value and press Transfer.

Electronics temperature Simulation

By simulating the electronics temperature, you can test the effect of excessive temperatures on the measuring results:

- 1. Open the Device Menu Simulation
- 2. Select the register **Electronics Temperature**.
- 3. Set Simulation Electronic Temperature, then set the parameters:
 - either enter a fixed value for Electronics Temperature fixed
 - or adjust the ramp parameters for Electronic Temperature ramp
- 4. Transfer the settings to the device.
- You can view the reaction in the status of the measured values (input and secondary variables), and the output, using SIMATIC PDM (open the View Menu **Display** and select the appropriate register).
- 6. To return to normal operation, turn off **Simulation Electronic Temperature** and press **Transfer**.

Drag indicators (Peak indicators)

Two pairs of drag indicators allow you to monitor the negative and positive peak values for the measured values Sensor Value and Electronics Temperature.

- Open the View Menu Drag Indicators.
- To reset the peaks to the actual measured value, click the appropriate Reset button.
- Press Enter: the status field reads Changed

Operating hours

An operating hours meter for the electronics is activated when the transmitter is first started.

• Open the View Menu **Operating hours.**

Switch Point adjustment

There are two switch points:

- Switch point 1 (Off to On)
- Switch point 2 (On to Off)

To adjust the switch behavior, set the percentage of the application range¹ at which point the logic switch will change from OFF to ON, or from ON to OFF.

- The application range must be defined first (see *Adjust 0 % application range setting*. and *Adjust 100 % application range setting* on page 66. Ensure your setup procedure follows the guidelines for the application which most resembles your operation).
- Open the menu View–Display, and select the register Transducer Block: Discrete Input, to view the actual Sensor Value, the Sensor Value Discrete, the actual valid Switch Point and Hysteresis
- Go to Input > Transducer Block: Discrete Input > Switch behavior.
- Edit the value of Switch Point 1 in the "Switch Point" field.
- Edit the value of Switch Point 2 to adjust the Hysteresis
- Click on Transmit.
- Track the effect of the adjustment by looking at the Sensor Value Discrete.

Device Reset

To reset the device, open the Device Menu Master Reset. The three reset options are:

- Factory reset (Restart/cold startup)
- Warm start (new start-up)
- Resetting the PROFIBUS address to 126

Factory Reset (Restart/cold startup)

If Pointek CLS200/300 has been adjusted to such an extent that it can no longer fulfil its measuring tasks, you can use **Factory Reset** to recreate the delivery status. It resets most parameters to the factory setting.

During a Factory Reset, a check mark appears against the diagnostic message **Restart** (cold startup) carried out for about ten seconds, and the LCD displays UPDATE ALERT, as rolling text in the auxiliary reading field.

Warm start (new start-up)

A Warm start (new start-up) disconnects Pointek CLS200/300, and restarts it. Communication is interrupted and re-established.

You will need this function if, for example, during communication with a cyclic Master, the PROFIBUS address has been changed.

During a Warm start, a check mark appears against the diagnostic message **New start**up (warm startup) carried out for a few seconds. As long as there is no measured value result, the automation or control system records the status **Uncertain, initial value, Value** constant.

¹ The application range is defined by the 0% and 100% settings (see page 65).

Resetting the PROFIBUS address to 126

If no other device in your system has the preset address 126, you can extend the PROFIBUS PA line during operation of the automation or control system, with an additional Pointek CLS200/300 with the address 126. The only requirement is to change the address of the new integrated device to another value lower than 126.

If you remove a Pointek CLS200/300 from the PROFIBUS channel, you should use this function to reset its address to 126 so that, if required, it can be reintegrated into this or another system.

Lock

Secures Pointek CLS200/300 from changes.

Lock Options			
Parameter name	Effect	Turn on/off	Digital display
HW Write Protection	Parameter changes using SIMATIC PDM, and settings via local operation, are both disabled. Independent of the other lock functions.	Keypad Mode 10	L
Write locking	Prevents parameter changes via the bus. Local operation is possible.	SIMATIC PDM Online dialog: Write locking	Lc
Local Operation	If local operation is disabled, no access is possible using the keypad. Independently of this parameter, local operation is automatically enabled 30 s after a communication failure. Once communication has been re- established, the parameter Local Operation in the device is reset to the original setting.	SIMATIC PDM Local Operation	LA

You can also combine the locking functions

HW Write Protection	Write locking	Local Operation	Digital display
Off	Off	enabled	
On	On or Off	enabled or disabled	L
Off	Off	disabled	LA
Off	On	disabled	LL
Off	On	enabled	Lc

Sensor Test

Open the Device Menu to find and activate the Sensor Test via PDM, and to see the results (test successful, or test failed).

Display Source for local operation

You can select one of four options for the value to be displayed on the LCD:

- Output value
- Primary Value
- Sensor Value
- Electronics Temperature.

Go to Local Display and Operation > Display Source and select from the pull-down tab.

The measured value display shows the value (in counts) when **Sensor value** is selected. The logical level display shows the value On or Off when **Output value** is selected. When communication with a master is in progress, this is indicated by the communication character **o** on the digital display. (For more details see *RUN mode display* on page 30.)

Measured value display

sensor uncovered

Logical	level	display
sensor c	overed	b

communications character	communications character up arrow	
down arrow indicates solid- state switch open	indicates solid- state switch closed	

Operating Principles

In capacitance measurement¹ inside a vessel or silo, the environment (typically, the vessel wall) acts as the reference electrode of a variable capacitor, and the probe supplies the measurement electrode. The dielectric² is composed of the vessel contents (air, vapor, liquid, solid, or a combination) and, if the measurement electrode is insulated, the insulating layer.

The capacitance when the probe is uncovered (capacitance in air) will be different from the capacitance when the probe is covered (for example, capacitance in water). If the product is two immiscible liquids with different relative dielectric constants, (for example, oil and water) the capacitance will change at the interface between the two liquids.

High Frequency Oscillator

The Pointek CLS200/300 probe is equipped with a high frequency oscillator which responds to the capacitance. The inverse of frequency is proportional to the capacitance. A small change in capacitance results in a large change in frequency which is easy to detect, resulting in high resolution and accuracy.

Counts

Frequency is always represented in 'counts', a dimensionless, uncalibrated value generated from the inverse of frequency. The measured value is displayed in counts. (If you are using PROFIBUS PA, you can set the measuring limits, in counts.)

^{1.} For definitions relating to capacitance, see the glossary, page 117

^{2.} The relative dielectric constant of air (vacuum) is 1: all other materials have a higher value.

Detection Range

The functional detection range depends on the relative dielectric constant of the material monitored. The detection range will be shorter when the material has a lower relative dielectric constant, and longer when it has a higher relative dielectric constant.

See *Specifications*, page 8, for performance information; also check the product nameplate on the enclosure, for details of your particular instrument.

The Pointek CLS200 electrode

The Pointek CLS200 electrode is the primary sensor of the system. It supplies the electrical capacitance value. The reference is the environment at the time of setup.

The design of the Pointek CLS200 probe makes it very sensitive to changes in capacitance in the immediate vicinity of the antenna tip.

- R Ratio between initial capacitance and total capacitance
- Ca₁ = Initial capacitance of the CLS200
- Ca₂ = Initial capacitance (air) between the probe and the installation
- Cm1 = Capacitance increase of the CLS200 caused by product replacing air
- Cm₂ = Capacitance increase between the probe and the installation caused by product replacing air.

The initial capacitance of the CLS200 itself makes it possible to operate the CLS200 in a plastic tank where the Ca₂ and Cm₂ terms would disappear. However, a properly arounded metal tank will reduce the effects of external influences on the sensor.

The sensor can be set to detect either the change in capacitance as the product level approaches the antenna tip, or the change when the probe becomes covered.

The Pointek CLS300 electrode

The Pointek CLS300 electrode is the primary sensor of the system. It supplies the electrical capacitance value.

The Pointek CLS300 patented Active Shield Technology electrically isolates the measurement section and reduces the effect of any non-measurement capacitance on the measurement capacitance. (Capacitance changes could result from uncontrolled variations occurring in the connection cable, process connection, and non-active parts of the probe.) This gives a better ratio of initial capacitance to total capacitance, resulting in higher accuracy

The measurement is further protected from interference by a buffer, which applies the frequency signal from the measurement section to the Active Shield section. This effectively eliminates any electrical potential difference between the shield and the measurement section and prevents additional changes in capacitance occurring, especially when material builds up at the probe entrance to the tank.

The relative lengths of the measurement section and Active Shield section can be specified to suit a particular application. If the measured range will be short relative to the total length of the electrode, specify a short measurement section. This increases the achievable resolution of the measurement, since any change in level will be greater relative to the length of the measurement section.

The powder-coated aluminum enclosure provides reliable operation in environments with dust, moisture, and high-frequency interference.

Sensor Test

You can initialize a sensor test by activating the reed contact with a magnet¹ from outside the housing. For details, see *Magnet-activated sensor test*, on page 36.

^{1.} A test magnet will be supplied with the instrument.

PROFIBUS PA electronics: mode of operation

The process variable to be measured is generally referred to as the input variable.

The input variable provided by the sensor is an isolated digital frequency signal. This is evaluated in a microprocessor and made available via PROFIBUS PA. The data for transmitter parameterization is stored in non-volatile memory.

Pointek CLS200 Digital Pressure versus Temperature Curves

CLS200 compact and extended rod versions, threaded

7ML19985JJ05

CLS200 compact and extended rod, ASME welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

CLS200 cable, ASME welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

CLS200 compact and extended rod, EN welded flange

CLS200 cable, EN welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

Pointek CLS300 Digital Pressure versus Temperature Curves

CLS300 standard, extended rod and cable versions, threaded

CLS300 high temperature rod version, threaded

CLS300 standard, extended rod and cable versions, ASME welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

CLS300 high temperature rod version, ASME welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

CLS300 standard, extended rod and cable versions, EN welded flange

1) The curve denote the minimum allowable flange class for the shaded area below.

CLS300 high temperature rod version, EN welded flange

Appendix B: Maintenance and Repairs

Pointek CLS200/300 requires no maintenance or cleaning.

Unit Repair and Excluded Liability

All changes and repairs must be done by qualified personnel, and applicable safety regulations must be followed. Please note the following:

- The user is responsible for all changes and repairs made to the device.
- All new components must be provided by Siemens Milltronics Process Instruments Inc.
- Restrict repair to faulty components only.
- Do not re-use faulty components.

PROFIBUS PA electronics: mode of operation

The process variable to be measured is generally referred to as the input variable.

The input variable provided by the sensor is an isolated digital frequency signal. This is evaluated in a microprocessor and made available via PROFIBUS PA. The data for transmitter parameterization is stored in non-volatile memory.

Block model for recording and processing measured values

The functions of the device are divided into blocks for different areas of responsibility. They can be parameterized by acyclic data transfer via PDM

sensor level Transducer Block Uscrete input function block

Block connection diagram for recording and processing measured values

Transducer Block (TB)

The Transducer Block carries out adjustments to the sensor. Its output value (Primary Value) is the status of the switch that indicates whether the sensor is covered by the medium or not.

The Transducer Block also carries out the required temperature measurement functions and monitors the permitted temperature limits.

Discrete Input Function Block

In the Discrete Input Function Block, the Primary Value is processed further and is adjusted to the automation task: that is, it looks after conversion, and

operations.

The output of this block supplies the measured value and the associated status information to PROFIBUS PA.

Parameters for local digital display

The values of the following parameters from the measuring and function blocks can be presented on the digital display. One of the options shown below must be selected in *Mode 13: Display Source (default: 0)*: see page 38.

Block	Parameter	Can be displayed locally
Transducer Block	Primary Value	yes
	Sensor Value discrete	no
	Sensor Value	yes
Transducer Block Electronics temperature	Electronic temperature	yes
Discrete Input Function Block	Output	yes

Description of the blocks

Transducer Block

The figure below shows the signal flow of measured values from the sensor through the Transducer Block into the output value (Primary Value). The parameters of the individual functions (switch behavior and delay) can be changed via acyclic access (SIMATIC PDM).

Transducer Block function groups

How it works:

The frequency value (represented in 'counts'¹) is checked to see if it is within its measuring limits. If the limit is exceeded, this results in a **Bad** status and the error message **Failure in measurement**. The frequency value is stored in Sensor Value.

The analog signal from the sensor is transformed into a discrete signal which controls the behavior of the switch point. The switch point is provided with a hysteresis.

A delay function provides the discrete signal with individual delay times for rising and falling delay (Rise Time and Fall Time). The delay function acts as a filter that, for example, compensates for a medium with an agitated surface. The result of this smoothed signal is the Primary Value.

Electronics temperature

The Transducer Block also monitors the internal temperature of the device electronics. If the temperature exceeds permitted limits, it does not change the sensor value, but it does change the status. Permitted limits correspond to those of the permitted ambient temperature for the electronics components. Temperatures in excess of these limits may damage the components or cause them to become unstable.

If a temperature limit is exceeded, the status changes to **GOOD – Active Critical Alarm – Limit Overflow/Underflow**. The status of the Sensor Value, the Sensor Value discrete, and the Primary Value in the Transducer Block Discrete input, receive the status **UNCERTAIN** – **Value inaccurate**. This action is accompanied by a PROFIBUS diagnostic message **Electronics temperature too high**.

Drag indicators² allow you to check the maximum and minimum temperatures that have occurred.

^{1.} See *Counts* on page 73 for more detail.

^{2.} See *Drag indicators (Peak indicators)* on page 69 for more detail.

Discrete Input Function Block

The figure below shows how measured values are processed within the Discrete Input Function Block.

Discrete Input Function Block function groups

How it works

The Discrete Input Function Block allows you to control modifications to the output value (PROFIBUS cyclic data):

- Select Inversion ON or OFF: when ON, the Primary Value from the Transducer Block, or a simulation value given by the simulation switch, will be inverted.
- Select Failsafe behavior options: if the status of the Primary Value or Simulation Value is **bad**, the fault logic can output either the last usable measured value (Mode 22 = LUv), a given substitute value (0 or 1), or the last usable measure value with the status **Bad**, sensor failure.
- Select one of 3 settings:

Setting	description	Output value
AUT0	automatic	the automatically-recorded measured value
MAN	manual	a manually-set fixed simulation value
0/S	function block disabled	the preset safety value.

• The result is the output parameter (OUT).

Appendix D: Product Nameplates

Note: Information in boxes 1 through 7 changes based on customer order.

Pointek CLS200/300 Digital – OPERATING INSTRUCTIONS

Pointek CLS300

Appendix E: Hazardous Area Installation

- WARNINGS:
- Turn off power before servicing any device.
- Please check the ambient and operating temperatures under *Environmental* on page 12, and *Process* on page 12 for the specific configuration you are about to use or install.
- For intrinsically safe circuits, only certified current measuring devices compatible with the transmitter may be used.
- In potentially explosive atmospheres:

 open the enclosure only when Pointek CLS200/300 is not energized.
 - if a transmitter is to be used as category 1/2 equipment, please check the product nameplate, and see *Appendix D: Product Nameplates*, page 89 onwards, to verify the protection type.
- For intrinsically safe CLS200/300 models, power must be supplied from an Intrinsically Safe power source, otherwise protection is no longer guaranteed.

Note: The transmitter is in operation when the power supply is switched on.

Instructions specific to hazardous area installations

(Reference European ATEX Directive 94/9/EC, Annex II, 1/0/6)

The following instructions apply to equipment covered by certificate number KEMA 03ATEX1007X, KEMA 03ATEX1008X, KEMA 03ATEX1010X, KEMA 00ATEX2039X and KEMA 00ATEX2040X:

- 1. For use and assembly, refer to the main instructions.
- 2. The equipment is certified for use as Category 1G, 1/2G, 3G, 1/2D, 2D. Refer to appropriate certificate.
- 3. Refer to appropriate certificate for application in specific hazardous environment.
- 4. Refer to appropriate certificate for ambient temperature range.
- 5. The equipment has not been assessed as a safety related device (as referred to by Directive 94/9/EC Annex II, clause 1.5).
- Installation and inspection of this equipment shall be carried out by suitably trained personnel in accordance with the applicable code of practice (EN 60079-14 and EN 60079-17 in Europe).
- 7. Repair of this equipment shall be carried out by suitably trained personnel in accordance with the applicable code of practice (e.g. EN 60079-19 within Europe).

- 8. Components to be incorporated into or used as replacements in the equipment shall be fitted by suitably trained personnel in accordance with the manufacturer's documentation.
- 9. The certificate numbers have an 'X' suffix, which indicates that special conditions for safe use apply. Those installing or inspecting this equipment must have access to the certificates.
- 10. If the equipment is likely to come into contact with aggressive substances, then it is the responsibility of the user to take suitable precautions that prevent it from being adversely affected, thus ensuring that the type of protection is not compromised.

Aggressive substances: e.g. acidic liquids or gases that may attack metals, or solvents that may affect polymeric materials.

Suitable precautions: e.g. establishing from the material's data sheet that it is resistant to specific chemicals.

Note: Please see <u>www.siemens.com/pointek</u> for the latest approval certificates.

Operating the CLS200 Intrinsically Safe configuration in hazardous areas

ATEX

- Maximum permissible ambient temperature range in potentially explosive atmospheres:
 - -40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T4
 - -40 °C to maximum +40 °C (-40 °F to maximum +104 °F): T6
- Maximum permissible process temperature range in potentially explosive atmospheres:

-40 °C to maximum +125 °C (-40 °F to maximum +257 °F)

CSA/FM

- Installation shall be done according to drawing A5E01175715 (www.siemens.com/pointek).
- Maximum permissible ambient temperature range in potentially explosive atmospheres:
 - -40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T4
 - -40 °C to maximum +40 °C (-40 °F to maximum +104 °F): T6
- Maximum permissible process temperature range in potentially explosive atmospheres:

-40 °C to maximum +125 °C (-40 °F to maximum +257 °F)

Operating the CLS200 Flameproof / Explosion Proof configuration in hazardous areas

ATEX

 Maximum permissible ambient temperature range in potentially explosive atmospheres:

-40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T4

–40 °C to maximum +85 °C (–40 °F to maximum +185 °F): T5

```
-40 °C to maximum +70 °C (-40 °F to maximum +158 °F): T6
```

• Maximum permissible process temperature range in potentially explosive atmospheres:

For category II 1 G:

 $-20~^\circ\text{C}$ to maximum +60 $^\circ\text{C}$ (–4 $^\circ\text{F}$ to maximum +140 $^\circ\text{F}$) For category II 2 G:

–40 °C to maximum +125 °C (–40 °F to maximum +257 °F): T4

```
–40 °C to maximum +95 °C (–40 °F to maximum +203 °F): T5
```

-40 °C to maximum +80 °C (-40 °F to maximum +176 °F): T6

CSA/FM

 Maximum permissible ambient temperature range in potentially explosive atmospheres:

-40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T4

```
-40 °C to maximum +40 °C (-40 °F to maximum +104 °F): T6
```

• Maximum permissible process temperature range in potentially explosive atmospheres:

–40 °C to maximum +125 °C (–40 °F to maximum +257 °F)

Operating the CLS300 Intrinsically Safe configuration in hazardous areas

ATEX

 Maximum permissible ambient temperature range in potentially explosive atmospheres:

-40 °C to maximum +85 °C (-40 °F to maximum +185°F): T4

- -40 °C to maximum +40 °C (-40 °F to maximum +104 °F): T6
- Maximum permissible process temperature range in potentially explosive atmospheres:

-40 °C to maximum +200 °C (-40 °F to maximum +392 °F) -40 °C to maximum +400 °C (-40 °F to maximum +752 °F): high temperature version

CSA/FM

 Installation shall be done according to drawing A5E01175715 (www.siemens.com/pointek).

- Maximum permissible ambient temperature range in potentially explosive atmospheres:
 - -40 °C to maximum +85 °C (-40 °F to maximum 185 °F): T4
 - -40 °C to maximum +40 °C (-40 °F to maximum 104 °F): T6
- Maximum permissible process temperature range in potentially explosive atmospheres:

-40 °C to maximum +200 °C (-40 °F to maximum +392 °F) -40 °C to maximum +400 °C (-40 °F to maximum +752 °F): high temperature version

Operating the CLS300 Flameproof / explosion proof configuration in hazardous areas

ATEX

 Maximum permissible ambient temperature range in potentially explosive atmospheres:

-40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T4

- -40 °C to maximum +85 °C (-40 °F to maximum +185 °F): T5
- -40 °C to maximum +70 °C (-40 °F to maximum +158 °F): T6
- Maximum permissible process temperature range in potentially explosive atmospheres:

For category II 1 G:

 $-20\ ^\circ\text{C}$ to maximum +60 $^\circ\text{C}$ (–4 $^\circ\text{F}$ to maximum +140 $^\circ\text{F}$) For category II 2 G:

-40 °C to maximum +135 °C (-40 °F to maximum +275 °F): T4

- -40 °C to maximum +100 °C (-40 °F to maximum +212 °F): T5
- -40 °C to maximum +80 °C (-40 °F to maximum +176 °F): T6

CSA/FM

 Maximum permissible ambient temperature range in potentially explosive atmospheres:

 $-40\ ^\circ\text{C}$ to maximum +85 $^\circ\text{C}$ (–40 $^\circ\text{F}$ to maximum +185 $^\circ\text{F}$): T4

-40 °C to maximum +40 °C (-40 °F to maximum +104 °F): T6

• Maximum permissible process temperature range in potentially explosive atmospheres:

-40 °C to maximum +200 °C (-40 °F to maximum+ 392 °F) -40 °C to maximum +400 °C (-40 °F to maximum +752 °F): high temperature version

Appendix F: Dimensions - CLS200 Digital

Enclosure, threaded process connection

Compact Version, threaded

Extended Rod Version, threaded

Sanitary Compact Version

Sanitary Extended Version

Sliding Coupling Version, threaded

F: CLS200 Dimensions

Extended Cable Version, threaded

CLS200 - Flanged Process Connections

Flange Facing Table

Flange Facing (raised face)		
Flange Class Facing thickness		
\triangle	ASME150/300	2 mm (0.08")
\triangle	ASME600/900	7 mm (0.28")
\bigtriangleup	PN16/40	2 mm (0.08")

Compact Version, welded flange

Extended Rod Version, welded flange

Extended Cable Version, welded flange

Appendix G: CLS300 Digital Dimensions

Threaded Processs Connection

G: CLS300 Dimensions

Rod Version, threaded

High Temperature Rod Version, threaded

Non-insulated Cable Version, threaded

Insulated Cable Version, threaded

CLS300 - Flanged Process Connections

Flange Facing Table

Flange Facing (raised face)							
	Flange Class	Facing thickness					
\triangle	ASME150/300	2 mm (0.08")					
Δ	ASME600/900	7 mm (0.28")					
\triangle	PN16/40	2 mm (0.08")					

High Temperature Rod Version, welded flange

Non-insulated Cable Version, welded flange

Insulated Cable Version, welded flange

Appendix H: Shortening the cable

Pointek CLS200 Digital, Cable Version

CAUTION: Possible only with the general purpose configuration; please verify against product nameplate.

Preparation

Determine the required cable length, and subtract that amount from the actual length, to find the excess length to cut off.

For example: 10 m (actual length) minus 9 m (required length) = 1 m (excess)

Steps

1. Unscrew the cable gland compression nut to relieve the sealing cone and release the cable.

2. Unscrew the probe sleeve from the lower assembly using two 17 mm (0.67") wrenches across the flat surfaces, as shown below.

a. Place two wrenches on the flat surfaces of the probe as shown: hold the probe sleeve still, and turn the lower wrench counter-clockwise to loosen the probe lower assembly.

b. Remove the lower assembly by turning the threaded electrode end counter-clockwise: this exposes the three leads, the tension block, and the steel spacer.

3. Remove the heat shrink insulation covering the solder connections.

4. Unsolder the connections.

Note: Do not cut the connections to the probe leads, as this can render them too short to work with later.

- 5. Remove the tension block, and save it for re-use in step 7.
- 6. Calculate the excess cable, then add back an allowance of 75 mm (3") for making the connections:

For example, 1000 mm less <u>75 mm</u> 925 mm

= excess

= allowance for connections

- = excess cable to be removed
- 7. Cut off the excess cable.

Caution: To prevent wires from being pulled through the cable bundle, secure each wire close to where the outer black jacket stops **prior** to stripping cable insulation from it.

- 8. Remove approximately 75 mm (3") of cable jacket, shield, and filler strands.
- 9. Cut off the excess cable core, making sure the cut is clean and square
- 10. Replace the steel spacer and tension block, then shorten the leads to approximately 40 mm (1.6").
- 11. Prepare the leads for soldering, and if heat shrink is used to insulate splices, remember to slip on the heat shrink before soldering the leads. (Note: white heat shrink has been applied to the orange wire to simplify correct connection.)
- 12. Make the solder connections and position the heat shrink to completely insulate each solder connection before shrinking it.

- 13. Remove any excess cable core, if necessary.
- 14. Apply PTFE type tape/sealant to all threads.
- 15. Add a pre-twist to the wires before screwing the probe sleeve and lower probe assembly together: hold the probe sleeve still, and gently turn the lower probe assembly counter-clockwise about 5 full turns. This avoids the wires being broken when the probe and probe sleeve are assembled.
- 16. Screw the lower probe assembly clockwise into the probe sleeve, and tighten it with a 17 mm (0.67") wrench.
- 17. Check that the instrument is operating correctly, using the test procedure on page 24.

Pointek CLS300 Digital, Cable Version

Caution: When shortening a PFA cable, be sure to take extra care.

Methods

- 1. An angle grinder (preferably with a disc suitable for stainless steel)
- or
- 2. Wire cutters (suitable for piano cable Ø 6 to 9 mm).

Procedure

- 1. Loosen the three set screws and pull weight from the cable.
- 2. Grind/cut the cable to the required length, and then remove rough edges from the cable.
- Ensure that cable strands are properly seated in the lay of the cable (i.e. no wire strands sticking outside the normal cable profile). Make sure ALL strands are properly seated before continuing the assembly.
- 4. Push the weight onto the cable while simultaneously **rotating it counter-clockwise** around the cable. Make sure that no cable strands are pushed out of their position in the cable and that the cable is fully inserted.
- 5. Re-fasten the weight by tightening the three set screws.

Glossary

- **capacitance:** the property of a system of conductors and dielectrics that permits the storage of electricity when potential differences exist between the conductors. Its value is expressed as the ratio of a quantity of electricity to a potential difference, and the unit is a Farad.
- **capacitor:** a device in a circuit that has the potential to store an electric charge. Typically a capacitor has 2 conductors or electrodes separated by a layer of a nonconducting material called a dielectric. With the conductors on opposite sides of the dielectric layer oppositely charged by a source of voltage, the electrical energy of the charged system is stored in the polarized dielectric.
- **condensed status byte**: a new form of the status byte introduced with PROFIBUS Profile standard 3.01. Includes improved error codes and improved bit mapping to allow easier filtering of messages.
- **derating**: to decrease a rating suitable for normal conditions according to guidelines specified for different conditions.
- dielectric: a nonconductor of electric current.
- **relative dielectric constant:** the ability of a dielectric to store electrical potential energy under the influence of an electric field. This is measured by the ratio of the capacitance of a condenser with the material as dielectric to its capacitance with vacuum as dielectric. The value is usually given relative to a vacuum /dry air: the relative dielectric constant of air is 1.
- immiscible: incapable of mixing or attaining homogeneity.
- **implicit:** for example in "the units are implicit in pF," the units are implied, or assumed to be pF, because there is no other option.
- miscible: capable of being mixed.
- **repeatability:** the closeness of agreement among repeated measurements of the same variable under the same conditions.
- saturation: a condition in which any further change of input no longer results in a change of output. For example, "the loop-current will saturate to 3.8 or 20.5 if the level exceeds the Range settings."
- solid-state device: a device whose function is performed by semi-conductors or the use of otherwise completely static components such as resistors and capacitors.
- status byte: standardized code returned by a PROFIBUS slave on every bus scan, alon with the main process variable (output o the Analog Input Function Block).

stillpipe: a grounded metal tube with openings.

Index

A

acyclic data transmission 54 alarm output selecting trigger (local operation) 43 set Switch Point Off to On 44 set Switch Point On to Off (local operation) 45 alarm output switch contact Open or Close 44 application range 0% setting (local operation) 40 100% setting (local operation) 41 adjusting (PROFIBUS PA) 65 approvals certificates 89 Auxiliary Reading RUN mode 29 В block model discrete input function block 85 transducer block 85 Bus address (Device Address) 54 **Bus Termination 54** С cable length adjusting 113 configuration illustration 7 counts representing frequency 73 cyclic data transmission 54 D data transmission 55 delay settings local operation 37 **PROFIBUS PA 66** detection range 74 **Device Description 53** diagnosis (PROFIBUS PA) 58 Dimensions **High Temperature Version 105** dimensions 23 cable configuration 99 compact version 95 lid with window 95 sanitary, with extension 97 discrete input function block

function groups 88 display Bar graph 31 display source selection 38 Error message display 30 Measured value display 30 **PROFIBUS PA values 86** PROGRAM mode display 32 RUN mode display 30 select language (local operation) 46 drag indicators peak sensor value (PROFIBUS PA) 69 peak temperature (PROFIBUS PA) 69 Е editing values local operation 32 electronics mode of operation 77, 84 F Failsafe (PROFIBUS PA) 67 falling edge switch On to Off (local operation) 45 G GSD file 53 н hazardous area installation warnings 91 hazardous area operation requirements 91 high frequency oscillator 73 **High Temperature Version 105** Dimensions 105 L Identifications and Abbreviations list 3 input keypad 29 quick reference 33, 121 Installation warnings and notes 15, 20 installation location 16, 20 process cautions 19, 22 Inversion (PROFIBUS PA) 66 Κ keypad 29 quick reference 33, 121 L LCD display 29 lock HW Write Protection (local operation) 38

PROFIBUS PA 71

M maintenance 83 maintenance timer (PROFIBUS PA) 69 manual information organization 2 measured values monitoring (remote operation) 63 measurement frequency (digital) 8 mode selection local operation 32 mounting multiple units 17 vertical or horizontal 16, 20 mounting restrictions 17, 21 multiple units 21 0 operating principles 73 parameter setting changing (PROFIBUS PA) 64 PDM see SIMATIC PDM 53 Pointek CLS 200 overview 5 power requirements General Purpose/Intrinsically Safe 8 **PROFIBUS PA 54** primary reading RUN mode 29 probe protection falling material 19, 22 process connections 10, 11 **PROFIBUS Ident Number** select in local operation 40 PROFIBUS PA connection to screw terminals 51 connection via M12 plug 51 data transmission 55 status codes 55 PROFIBUS PA wiring warnings and notes 50 programming functions via PROFIBUS 64 via the 3-button keypad 32 R repair 83 rising edge set switch point Off to On 44 S safety marking symbols 1

safety notes 1 sensor status set Local Status Text 46 sensor test (local operation 36 **PROFIBUS PA 72** shortening the cable 113 SIMATIC PDM overview 53 simulation **PROFIBUS PA 67** status 55 status byte 55 status codes overview 55 support 3 switch point adjustment **PROFIBUS PA 70** т technical support contact information 3 tension block 114 transducer block electronics temperature 87 function groups 86 W wiring **PROFIBUS** connection 50 **PROFIBUS PA warnings and notes 50** requirements, standalone unit 24 wiring (PROFIBUS PA) warnings and notes 50

Quick Reference: operating functions using input keypad

Function	Mode Key function			Key function	Display, or explanation		
	#	Ma	↑	\downarrow	\Uparrow and \Downarrow		
Measured value display ^b						Measured value (selected in Mode 13)	
Error display						Hardware or software error.	
Sensor test	2		Either key activates test			Displays GOOd or FAILd.	
Rise Time	4		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Time in seconds. Range: 0.0 to 100.0 s	
Fall Time	5		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Time in seconds. Range: 0.0 to 100.0 s	
HW Write Protection	10		Either key activates keylock.		Hold for 5 seconds to release ^c	 – = disabled (parameter changes allowed) L = enabled (parameter changes inhibited) 	
Display Source	13	*	Scroll up or down to select an option.			Source of measured value: 0 = OUT (output); 1 = PRIM (primary value); 2= SENS (sensor); 3 = TMP E (electronics temperature)	
Unit	14	*	Scroll up or down to select an option.			Select K, °C, °F, °R (if electronics temperature selected in Mode 13).	
Node address (PROFIBUS only)	15		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Assign slave address on the PROFIBUS-line (0 to 126). Recommended setting range 1 to 125.	
PROFIBUS Ident Number	16		Scroll up or down to select an option.			Select device mode: 1 =according to profile; or, 2 = according to profile with full device specific support.	
Application Range, Lower Limit / 0%	19		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Adjust lower limit of application range.	

Function	Mode			Key function	Display, or explanation	
	#	Ma	↑	\downarrow	\Uparrow and \Downarrow	
Application Range, Upper Limit / 100%	20		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Adjust upper limit of application range.
Alarm output trigger	23	*	Scroll up or down to select an option.			Select the source event to switch the alarm output. See <i>Mode 23: Alarm output trigger (default: dIAG)</i> on page 43.
Contact type	24	×	Scroll up or down to select an option.			Set contact functionality in case of event: (logical inversion of alarm output switch) - Make contact (CLOSE)/ Break contact (OPEn)
Switch Point 1 (Rising Edge) OFF to ON	25		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Set % of range at which switch will change from OFF to ON.
Switch Point 2 (Falling Edge) ON to OFF	26		Enable Edit function, or increment digit.	Move cursor to the right, or store edited value.		Set % of range at which switch will change from ON to OFF.
Local Status Text	27	*	Scroll up or down to select an option.			Select presentation of status text. See <i>Mode 27:</i> <i>Local Status Text (default: U_075)</i> on page 46.

^{a.} In Modes indicated by an asterisk (*), press M to store a selection. In other Modes, press \Downarrow to store numerical values.

^{b.} If **L** appears in the Mode indicator field of the display, the HW Write Protection is activated.

^{c.} If LA, LL, Lc or Li appears in the Mode indicator field of the display after releasing the HW Write Protection, there is an additional block on local operation via the bus. *Lock*, on page 71 explains how to release this using SIMATIC PDM. In measuring mode, if neither L, LA, LL, Lc or Li, appears in the Mode indicator display field, local operation is possible.

For more information

www.siemens.com/level

www.siemens.com/weighing

Siemens AG Industry Sector 1954 Technology Drive P.O. Box 4225 Peterborough, ON Canada K9J 781 email: techpubs.smpi@siemens.com

Subject to change without prior notice 7ML19985JJ04 Rev. 5.0

© Siemens AG 2011

email: techpubs.sinpl@siemens.com

www.siemens.com/processautomation